pertinent to small-scale flows, recipe instructions for the design and fabrication of prototypes suitable for biomicroelectromechanical systems, and applications ranging from lab-on-a-chip devices to optofluidic components. Not included in the literature search were 10 or so lengthy review articles, about 20 conference volumes, and 2 journals devoted exclusively to microfluidics—Lab on a Chip, published by the Royal Society of Chemistry, and Microfluidics and Nanofluidics, produced by Springer. There is now even a \$5000 prize, sponsored by Lab on a Chip and Corning Inc, awarded to "Pioneers in Miniaturization" under the age of 45.

The almost frantic output from academic and industrial researchers underscores the tremendous potential anticipated for technologies based on flow miniaturization. But gadflies like me remain a bit skeptical as to whether this field holds equal promise from a physics perspective, because most of

the mechanisms for generating flow, mixing, or separation are reasonably well understood. Exceptions include subtleties involving multiphase flows, boundary conditions at liquid-solid interfaces, and the crossover from continuum to molecular-length descriptions of flow.

For the most part, an undergraduate course on the fun-

damentals of fluid, heat, and mass transfer is sufficient for understanding the operational basis of microfluidic devices. In addition, the prevalence of software packages geared toward flow optimization for complex geometries renders the design of even the most esoteric layouts accessible to those with a more limited background. I thus approached Tabeling's book with bias, hoping to find material suitably challenging for physics students despite the book being an introductory text.

The seven main chapters in *Introduc*tion to Microfluidics touch on the subjects of low-Reynolds-number flow and its consequences for miniature systems; transport processes critical to microfluidic devices, such as diffusion, dispersion, mixing, absorption, and separation; electrokinetic flows in the context of lab-on-a-chip systems; heat transfer and efficient thermal control with microscale heat exchangers; and deposition and sealing techniques for constructing microplumbing components. The book is based on graduate courses offered during 2001-03 at the Jussieu campus, the University of Paris VI: Pierre and Marie Curie, and the École Polytechnique. This target audience explains the author's informal presentation style, which pervades his ambitious attempt to cover all facets of microfluidics in one volume.

Tabeling anchors his whirlwind tour of the field with specific examples: He provides more than 170 drawings illustrating various concepts, geometries, and device realizations, and he includes occasional boxed inserts containing short mathematical derivations. Unfortunately, the presentation does not lend itself to conventional homework problems. Also, the references at the end of each chapter of the book, which was originally published in French in 2003, are not sufficiently comprehensive or up to date for those eager to tackle more advanced or specialized topics.

For example, physics students might enjoy learning more about the forces responsible for electrowetting, one of the more elegant methods for droplet actuation. Electrohydrodynamic forces,

MICROFLUIDICS

when coupled to the dynamics of a moving contact line, reveal some challenging problems; but the book's discussion of electrowetting, which is poorly described, is far too brief and is limited only to the Lippman equation. The two electrowetting references are geared more toward materials compatibility and device fabrication than

fundamentals. The limited references miss substantial developments since 2002 that provide the hydrodynamic basis for the technique. Electrowetting devices represent just one category of a larger class of open microfluidic systems driven by surface acoustic waves, thermocapillary stresses, magnetic forces, and other electrocapillary phenomena—none of which are discussed at any length. Although droplet motion by surface-energy gradients is also considered, the explanation the author provides is not totally accurate. The fluid velocity depends on the gradient of the local curvature, as well as the square of the local droplet thickness, and not simply on the curvature as stated.

Unfortunately, Tabeling's desire for brevity leads in many cases to misleading descriptions, as, for example, with droplet evaporation. Many studies during the past decade have shown that evaporating droplets are not just subject to diffusion but also undergo complex processes as a result of boundary pinning, substrate wettability, thermocapillary and Marangoni effects, ambient saturation conditions, and vapor recoil effects, to name a few. Perhaps a

second printing of this book will include more detailed descriptions and eliminate distracting misnomers and grammatical errors, due in part to the inexperience of the translator, a graduate student at MIT.

The same qualities then that make the book an entertaining and painless entrée into the field of microfluidics, however, may leave physics students dissatisfied, as several of the presentations are too sketchy, elementary, or misleading in their simplicity. When referring to molecular-dynamics studies of slip boundary conditions, for example, Tabeling incorrectly states that the critical shear rate above which substantial slip is possible at liquid-solid interfaces is of order 10¹³ s⁻¹, well beyond the realm of commonplace flows. The proper way to make contact between actual laboratory systems and moleculardynamics simulations is through the relevant dimensionless quantities like the Reynolds, capillary, or Bond numbers. As known, a naive mapping of the length or time scales extracted from a Lennard-Jones interaction potential always leads to ridiculously high or low estimates in comparison to real experimental systems.

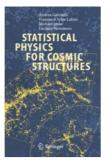
Despite these drawbacks, Tabeling's infectious excitement and broad interest in microfluidics and microhydrodynamic flows infuse the pages of this easy-to-read book. The illustrations and images are very useful in conveying concepts in a straightforward way. Readers who want a sweeping introduction to the various transport mechanisms and technologies at play will benefit from and enjoy this compact overview of the subject. Introduction to Microfluidics is likely to intrigue those interested in commercial devices who wish to peek under the covers to learn more about the fundamentals governing small-scale flows.

> **Sandra M. Troian** California Institute of Technology Pasadena

Statistical Physics for Cosmic Structures

Andrea Gabrielli, Francesco Sylos Labini, Michael Joyce, and Luciano Pietronero Springer, New York, 2005. \$89.95 (424 pp.). ISBN 3-540-40745-6

The large-scale structure of the universe as revealed through galaxy and cluster


catalogs is one of the observational cornerstones of physical cosmology. The importance of large-scale structure has been reinforced by the successful recent analyses of the Two Degree Field, or 2dF, Survey and the Sloan Digital Sky Survey (SDSS). The future for observing and analyzing large-scale cosmic structure is bright, with several wide-field surveys

planned over the next decade, leading up to those from the anticipated Large Synoptic Survey Telescope, which will observe billions of galaxies. Statistical Physics for Cosmic Structures by Andrea Gabrielli, Francesco Sylos Labini, Michael Joyce, and Luciano Pietronero aims to provide a general introduction to the tools of the trade, and to review and extend the authors' work of the past decade.

The first three chapters introduce general methods for describing the statistical properties of random fields and point processes in terms of correlations. The two-point correlations of a point process are the simplest quantitative measures of its clustering properties. Any complete model of cosmic structure formation predicts those two-point correlations, as well as a hierarchy of other multipoint correlations. Cosmologists infer the viability of models by comparing those predictions to the observed correlations in galaxy catalogs.

In those models of cosmic-structure formation that are in agreement with the bulk of available data, the observed cosmic structure is a consequence of initially small perturbations in a homogeneous and isotropic universe. Textbook treatments-such as Scott Dodelson's Modern Cosmology (Academic Press, 2003)—start from this premise. Yet the authors of Statistical Physics for Cosmic Structures take a more agnostic point of view and note that galaxy surveys alone do not rule out a strongly inhomogeneous, fractal distribution of matter. This point of view reflects the authors' background in statistical physics, in which critical phenomena and the notions of self-similarity and renormalization play prominent roles.

The introductory chapters thus contain a broad set of mathematical and statistical tools to handle both asymptotically homogeneous and multifractal point sets. For example, readers are treated to a complete classification of correlated point processes in terms of their asymptotic correlation properties. The authors emphasize that distribu-

tions of matter with certain power-law correlation functions have infinite correlation length. Cosmologists who use the term "correlation length" actually refer to what statistical physicists call the "homogeneity scale." Of course in standard cosmological models, the correlation function is a power law only over a limited range of scales, and the

correlation length does not diverge.

Chapters 4 and 5 provide a detailed discussion of fractal and multifractal point processes. Particularly in fractal systems, as the authors point out throughout the book, standard twopoint correlation analyses are prone to finite-size effects that prevent an unbiased analysis of the large-scale structure. The authors offer the conditional density as an alternative statistic for studying two-point correlations in the strong fluctuation regime.

I found these chapters intellectually stimulating, but readers should be aware of the spectacular successes of "vanilla" cosmology as applied to the second data release from the Wilkinson Microwave Anisotropy Probe and the most recent power spectrum analyses from the SDSS. The data strongly indicate that any fractality of the mass distribution is limited to scales in which gravity has amplified the small initial fluctuations into the nonlinear regime.

Chapter 6 provides a brief overview of the theory of large-scale structure and cosmic microwave background (CMB) anisotropies in standard cosmological models. Recent progress in these research fields makes the chapter feel somewhat dated. The only CMB experiment mentioned in any detail is the Cosmic Background Explorer. Chapter 7 contains a theoretical study of correlated displacements as a tool to construct point sets with specified correlation properties, an important issue because N-body simulations of cosmic structure require such point sets as initial conditions.

The analysis of galaxy catalogs is the subject of chapters 8 through 13. The treatment focuses on systematics due to finite-size effects. The authors emphasize that in a fundamentally irregular density distribution, a blind application of power-spectrum analysis can lead to spurious results if the size of the galaxy survey is smaller than the homogeneity scale.

Chapter 13 critiques the notion of bias. Traditionally, bias is a cosmologist's way to parameterize, based on simulations and observations, the relationships of various types of visible tracers to the underlying dark-matter distribution. Galaxy bias will presumably be explained by the full theory of galaxy formation, which as yet eludes cosmologists. The authors take a different position: They argue that bias is inherently scale dependent and changes qualitatively both the large-scale and small-scale behaviors of the power spectrum.

I enjoyed reading chapter 14, a short standalone on the statistical physics of the gravitational field in stochastic particle distributions. The discussion could have been a point of departure for a detailed treatment of the statistical physics of self-gravitating systems in an expanding universe and of the emergence of bound systems with universal density profiles.

For its unusual perspective, Statistical Physics for Cosmic Structures is a refreshing read. It is full of insightful discussion and covers several topics of interest and importance in statistical physics, data analysis, and cosmology while providing introductions to the required mathematical tools. The choice of topics and references is somewhat eclectic and necessarily falls short of the all-encompassing scope of the title. For example, most of the book covers twopoint correlations, yet the theoretical and observational frontier of research has advanced to multipoint correlation functions that contain additional information about the relationship between biased tracers and the underlying mass distribution. On the theoretical side, I was initially surprised that a book with this title could avoid mention of the Boltzmann or Vlasov equations and their solutions; but early on it became clear that the focus is on the phenomenological characterization of cosmic structures, not on the dynamics of their

Statistical Physics for Cosmic Structures occasionally takes the reader to the fringes of the cosmological mainstream. But in the end the monograph succeeds in delivering a stimulating, critical appraisal of the analysis techniques used for the bulk of large-scale structure data. It will be a helpful resource for those who want to use the descriptive tools of modern statistical physics to push toward a broader view of cosmic structure.

> Benjamin D. Wandelt University of Illinois Urbana-Champaign