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In 1960 Eugene Wigner wrote a fa-
mous essay entitled “The Unreasonable
Effectiveness of Mathematics in the
Natural Sciences.”' After recounting
several remarkable mathematical suc-
cess stories, he concluded:

The miracle of the appropriate-
ness of the language of mathe-
matics for the formulation of the
laws of physics is a wonderful
gift which we neither understand
nor deserve. We should be grate-
ful for it and hope that it will re-
main valid in future research and
that it will extend, for better or for
worse, to our pleasure, even
though perhaps also to our baf-
flement, to wide branches of
learning.

And of course that miracle did re-
main valid in future research. Indeed,
perhaps the most startling success of
the language of mathematics in the for-
mulation of the laws of physics oc-
curred about a decade after Wigner
wrote his essay, with the emergence of
non-abelian gauge theories of funda-
mental interactions. In those theories,
the building blocks of matter emerge as
nearly ideal embodiments of intricate,
abstract symmetry principles.

Yet, despite its tension with Wigner’s
thesis, I hold this truth to be self-
evident: that all correct general princi-
ples must be reasonable. For the burden
of reason is to clarify reality through the
application of correct general princi-
ples. If a correct general principle ap-
pears unreasonable, that appearance is
a fault we must repair—either by rea-
soning more deeply or, failing that, by
forcing our reason into line.

Given that truth, Wigner’s case
against the reasonableness of mathe-
matics” effectiveness presents us with
three choices, as follows: Either the ef-
fectiveness of mathematics in the natu-
ral sciences is not a correct general prin-
ciple, or it has a reasonable explanation,
or we must accept it as a postulate of
reasoning itself. I will argue that each of
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those options supplies part of an ade-
quate response.

Success through selection

One way to succeed at archery is to
draw a bull’s-eye around the place your
arrow lands. Part of the explanation for
the success of mathematics in natural
science is that we select what we regard
as the scientifically interesting aspects
of nature largely for their ability to
allow mathematical treatment.

For example, the amount of work de-
voted to the behavior of ultrapure semi-
conductor heterojunctions subject to
ultrastrong magnetic fields at ultralow
temperatures is grossly out of propor-
tion to the technological importance of
that physical domain or to its signifi-
cance in the natural world. What drives
the work is the fact that a rich and beau-
tiful mathematical theory of the quan-
tum Hall effect comes into play. And the
study of critical phenomena reached a
new level of popularity when the math-
ematical concepts of universality and
the renormalization group entered the
scene.

To avoid misunderstanding, let me
emphasize that I don’t mean to con-
demn our attraction to phenomena that
support rich mathematical theories—
though it can be overdone. In fact, my
two examples come from two fields I've
cultivated myself.

In his essay Wigner approvingly
quotes Michael Polanyi to the effect that
mathematics is designed to be interest-
ing:> “Mathematics cannot be defined
without acknowledging its most obvious
feature: namely, that it is interesting.”

Accepting Polanyi’s thesis, we un-
derstand that a sort of natural selection
is at work. Scientists choose to work on
problems that are interesting, and
mathematics is designed to be interest-
ing, so science evolves toward areas
where mathematics can be successfully
applied.

To cement the case that selection of
topics plays a major role in the per-
ceived effectiveness of mathematics,
let’s examine its record of effectiveness

Reasonably effective:
I. Deconstructing a miracle
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at the more conventional kind of
archery, where the bull’s-eye gets
drawn beforehand. There the score is
much less impressive. Turbulence, fric-
tion, and protein folding, for example,
are technologically important and ubi-
quitous phenomena in the natural
world, but despite much effort, they re-
main largely mathematical wilderness.
Richard Feynman expressed his yearn-
ing for a more effective mathematics:

The next great awakening of
human intellect may well pro-
duce a method of understanding
the qualitative content of equa-
tions. Today we cannot. . . . Today
we cannot see  whether
Schrodinger’s equation contains
frogs, musical composers, or
morality —or whether it does not.
We cannot say whether some-
thing beyond it like God is
needed, or not. And so we can all
hold strong opinions either way.’

Centuries earlier, in a similar vein,
Gottfried Wilhelm Leibniz expressed
the vision of a “universal characteris-
tic.” He wrote,

If controversies were to arise, there
would be no more need of dispu-
tation between two philosophers
than between two accountants. For
it would sulffice to take their pen-
cils in their hands, to sit down to
the slates, and to say to each other
(with a friend as witness, if they
liked): Let us calculate.*

Can mathematics be used to extract
qualitative predictions from physical
laws—or, for that matter, useful laws
from data—automatically? Perhaps, but
the omens aren’t auspicious. With
Godel’s theorem (the existence of true
statements that can’t be proved formally)
and the concepts of computational com-
plexity (the existence of many natural
problems that can’t be solved by practi-
cal algorithms) and chaos (the existence
of natural equations that can’t be solved
systematically), mathematics has identi-
fied limits to its own power.
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Paul Dirac once said that he consid-
ered he understood an equation when
he could anticipate the properties of its
solution without actually solving it. For
better or worse, thanks to computa-
tional complexity and chaos, we now
know many examples in which the so-
lutions of innocuous-looking equations
are either inaccessible or incapable of
simple description.

Sitting on my porch in New Hamp-
shire, Ilook out over a wind-rippled lake,
a piney horizon, a cumulus-patched sky,
and a pair of loons with their baby. Just
what aspect of that scene can be derived
from beautiful equations? To expose
beautiful equations at work, we can’t just
look out from our porches at natural
scenes. We must do extraordinary things
such as building and operating engi-
neering marvels like the Large Hadron
Collider and the Wilkinson Microwave
Anisotropy Probe, and then working hard
to cleanse their raw output of irrelevant
complications, artifacts, and noise before
interpreting the highly refined product
as proper data.

Gifts from nature

As explorers seeking the Northwest
Passage, El Dorado, and the Fountain of
Youth discovered, searching for your
heart’s desire by no means guarantees
that you'll find it. Selection by itself is
not enough to explain the power of
beautiful mathematics in our theories of
nature. Looking for beautiful, powerful
mathematical laws of nature wouldn’t
succeed were there not beautiful, pow-
erful mathematical laws to be found.
Why are there?

We canilluminate “Why?” questions
by asking whether things could possi-
bly have been otherwise. Can we imag-
ine worlds where behavior is governed
by something other than elegant math-
ematical laws? It’s all too easy. Children,
Aristotle, the authors of the Bible, and
the designers of Super Mario Brothers,
among many others, imagine such
worlds for us (in some cases, while mis-
takenly thinking they are describing
our world).

Because of some special features of
the way the real world works, it is much
more receptive to elegant mathematics.
The two most crucial of those, I think,
are symmetry and locality. It is symme-
try under changes in the moment you
start your clocks that makes the laws
unchangeable and eternal; it is symme-
try under changes in the place you put
your lab that makes them universal. Lo-
cality allows us to build up the descrip-
tion of nature by mathematical deduc-
tion from a description of simple
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interactions among elementary build-
ing blocks. Working together, locality
and symmetry give the laws the char-
acter of differential equations with re-
stricted forms.

Moreover, it is because coarse-
grained versions of local and symmet-
ric equations remain local and symmet-
ric that even approximate forms of the
laws retain much of their elegance.
Physics had beautiful equations long
before the emergence of the standard
model; and the standard model has
beautiful equations even though it is
surely not the ultimate truth.

Alert Reader: “You've argued in a
perfect circle! Mathematics, you say, is
effective in describing nature because
nature obeys mathematical concepts.”

Allow me to remind you, my critical
friend, that the world line of a circular
argument can be an ascending helix.
When people like Archimedes, Jo-
hannes Kepler, and Galileo discovered
the earliest “unreasonably effective”
mathematical laws of nature, each such
law seemed like a newly revealed mir-
acle, unanticipated and logically dis-
connected from the others. After tra-
versing a long history, we can now look
back to see the same laws in quite a dif-
ferent way, as particular consequences
of a more profound and encompassing
theoretical framework in which sym-
metry and locality emerge as dominant
features of the world’s deep structure.
Having found those dominant features,
we’ve uncovered the underlying rea-
sons why mathematics is so effective in
describing nature (that is, when it is!).

Acts of faith

Since any answer to a “why” question
can be challenged with a further “why,”
any reasoned argument must terminate
in premises for which no further reason
can be offered. At that point we pass,
necessarily, from reason to faith. Our
present faith in symmetry and locality
is grounded in the good experience
we’ve had with them so far. At present,
I think, we can carry our explanations
no deeper.

As good believing scientists we must
take our faith seriously—so seriously
that we feel compelled to act on it, and
thereby to test it. Symmetry as a guide
to physical law will, I hope and believe,
soon achieve spectacular new triumphs.

There are many promising avenues.
We can enhance the symmetry of the
equations describing the strong, weak,
and electromagnetic interactions by
postulating a more extensive gauge
symmetry that includes them all. When
we do that, many peculiar loose ends of

the standard model get tied up neatly.
But the bigger symmetry requires addi-
tional interactions, which destabilize
protons. The predicted rate of decay is
very small, but perhaps accessible to
observation.

Unification of the different interac-
tions requires new particles. Particles in
their virtual form, as quantum fluctua-
tions, contribute to vacuum polariza-
tion. The obscuring effect of those ever-
present fluctuations can explain the
difference between the observed, dif-
fering values of the couplings and the
single, unified, “bare” value we’d like to
think is fundamental. For accurate uni-
fication, the new particles can’t be too
heavy. Specifically, they should be light
enough to be produced in their real
(that is, not virtual) form at the upcom-
ing great accelerator, the Large Hadron
Collider.

Unifying symmetry can be extended
in a second direction. Extended gauge
symmetry connects the spin-1 (bosonic)
color gluons of quantum chromody-
namics, the W and Z bosons, and the
photons to one another, and also the
different spin-1/2 (fermionic) quarks
and leptons to one another. But it does
not connect those bosons and fermions
to one another. Supersymmetry accom-
plishes that feat. Implementing super-
symmetry also requires new particles.

Remarkably, the particles required
for supersymmetry supply just what
we need to get accurate unification of
couplings. (See the article by Savas Di-
mopoulos, Stuart Raby, and me,
PHYsICS TODAY, October 1991, page 25.)
Is that coincidence a cruel tease, or a
harbinger of spectacular synthesis?
We'll soon find out.

Symmetry also leads us to expect
Higgs particles, which can explain why
electroweak gauge symmetry is broken,
and axions, which explain why strong-
interaction time-reversal symmetry is not.

Eventual discovery of any or—as I
expect—all of these new phenomena
will be wonderful new confirmation of
the effectiveness of mathematics in nat-
ural science. But those discoveries will
constitute the pinnacle of reason, not an
“unreasonable” anomaly.
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