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The vis viva dispute:
A controversy at the
dawn of dynamics

The need to augment Newtonian mechanics to encompass systems more complex than collections of
point masses engendered a century-long dispute about conservation principles.
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Mechanics as a science of motion, as distinguished
from a science of machines such as the lever and windlass,
started early in the 17th century. By the middle of the next
century it had become clear that Isaac Newton'’s three laws
suffice for the motions of “point masses,” but it was not yet
clear how—and indeed whether—those laws could be ex-
tended to handle the motions of fluids or rigid bodies. Thus
the 18th century saw new laws such as the principle of least
action proposed and disputed. The most celebrated of those
disputes, concerning the conservation of vis viva (Latin for
“living force” and akin to what we now call kinetic energy),
was already under way by 1686, the year before Newton pub-
lished his laws of motion in the Principia.'

The vis viva controversy started as a dispute between Gott-
fried Wilhelm Leibniz (1646-1716) and followers of René
Descartes (1596-1650). It continued throughout the 18th cen-
tury, becoming the topic of several prize competitions.? In 1788,
long after the initial partisans had passed from the scene,
Joseph Louis Lagrange (1736-1813) opened part II of his Mé-
canique analytique by raising the vis viva question once again.’

The controversy is now usually portrayed as a dispute
about the conservation of mv (or momentum) versus the con-
servation of mv?* (or kinetic energy). In fact, it was not that
simple—which helps explain why it continued for so long.
The best way to appreciate the different issues is by review-
ing how the controversy got started. First, however, we must
remove some anachronisms implicit in viewing the argument
as mv versus muv>.

Newtonian mass did not become part of the controversy
until well into the 18th century. To ignore that is to lose sight
of the novelty of Newton’s concept. Newton first introduced
mass (Latin massa) in the Principia as short for “quantity of
matter.” Initially he had considered “heaviness” (Latin pon-
dus). In introducing mass he emphasized that “very accurate
experiments with pendulums” had shown that it is propor-
tional to weight.

The standard term before Newton was “bulk” (Latin
moles). He himself retained that older term in his only pub-
lished solution for the motion of colliding spheres, in his
Arithmetica universalis,* which appeared in Latin in 1707.
“Bulk” reflected the widespread view, held by both Leibniz
and the Cartesians, that gravity and weight involve ethereal
matter pressing down on solid matter in such a way that

© 2006 American Institute of Physics, S-0031-9228-0610-010-1

weight is proportional to the quantity of solid matter.

The other anachronism in mv and m?? is the use of sym-
bols at all. Until the calculus took over during the 18th cen-
tury, quantities were represented not by algebraic symbols
but by geometric constructs like lines and areas, and rela-
tionships among quantities were expressed not as equations
but as proportions. The two quantities originally entering
into the vis viva dispute were “motion,” taken to be the prod-
uct of bulk and velocity or speed, and, following Leibniz, vis
viva, the product of bulk and speed squared.

Galileo’s Discorsi

The notion that the square of speed is important derives from
three tenets central to the account of “local motion” given by
Galileo Galilei (1564-1642) in his Dialogues Concerning Two
New Sciences, which appeared in 1638.3

1. In the absence of resisting media, vertical fall
is a uniformly accelerated motion, and hence
the square of the speed acquired during fall is
proportional to the height of fall.

2. In the absence of resisting media, the speed
acquired during fall from rest is precisely suf-
ficient to raise an object back to its original
height, but no higher.

3. The speed acquired in fall along an inclined
plane from a given height is the same regard-
less of the inclination of the plane.

The last of these three tenets, which I will anachronisti-
cally call Galileo’s principle of path-independence, con-
tributes crucially to the concept of vis viva by giving the
square of the speed a generality that it would otherwise lack.
He originally introduced this principle as an assumption. The
posthumous edition of the Discorsi offered a defense based
on the magnitude of the vertically suspended weight re-
quired to hold a weight in equilibrium on an inclined plane.

Far from happy with that defense, Galileo’s protegé
Evangelista Torricelli (1608-47) offered a reductio ad absurdum
derivation of it in 1644 from a principle that came to bear his
name: Two weights joined together cannot begin to move by
themselves unless their common center of gravity descends.®
Three decades later, Christiaan Huygens (1629-95) stressed
the importance of path-independence in his Horologium
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Gottfried Wilhelm Leibniz (1646-1716).

oscillatorium,” offering a related reductio derivation for the
more general case of curvilinear paths of descent.

Descartes’ conservation of motion

The Cartesian principle against which Leibniz of-
fered the conservation of vis viva looks crazy to us
at first glance. It asserts that the total quantity of
motion—that is, the total quantity of bulk times
speed —always remains the same. Speed here is
taken to be independent of direction, not a vector
quantity. Hence Descartes’ principle is by no
means a forerunner of our modern principle of mo-
mentum conservation. So we need to understand
what he had in mind. The answer lies in Descartes’
a priori insistence that a vacuum is impossible. All
space is thus filled with matter, and the motion of
any part of matter requires that the matter ahead of
it be pushed forward.

Therefore, Descartes concludes, “in all movement
a complete circuit of bodies moves simultaneously.”® In
The Principles of Descartes” Philosophy,® Benedict (Baruch)
de Spinoza (1632-77) offers the diagram shown in figure 1
to illustrate both that conclusion and Descartes’ principle of
conservation of motion. The principle resembles the modern
notion of continuity for incompressible fluids in that what re-
mains constant everywhere around the circuit in the figure is
the product of speed and cross-sectional area. Descartes was
of course wrong; but this principle, which he considered even
more fundamental than his “laws of nature,” was not crazy.

The problem arose with Descartes’ understanding of the
mechanism that conserves motion during local changes. His
first two laws of nature together asserted that motion, if not
impeded, continues uniformly in a straight line. He was, in
fact, the first to insist that the curvilinear motion of planets
requires something to divert them from straight paths. As
such, he has stronger claims than anyone else to what came
to be known as the principle of inertia.

Descartes’ third law of nature concerns local changes of
motion:

When a body meets another, if it has less force to
continue to move in a straight line than the other
has to resist it, it is turned aside in another di-
rection, retaining its quantity of motion and
changing only the direction of that motion. If,
however, it has more force, it moves the other
body with it, and loses as much of its motion as
it gives to the other.®

The notion of force thus enters through interchanges of mo-
tion dictated by a contest of forces: the force to resist change
of motion and the force to produce it. The latter, Descartes
asserted, depends on the size of the body and its speed.

In the 1644 Latin edition of Descartes’ Principia, he
ended his discussion of interchange of motion by remarking
that what happens in individual cases can be determined by
calculating “how much force to move or to resist movement
there is in each body, and to accept as a certainty that the one
which is stronger will always produce its effect.” But in the
French translation three years later, he added seven supple-
mentary rules for explicitly predicting the outcome when
two “perfectly solid” bodies, perfectly separated from all

32 October 2006 Physics Today

others, come into contact. The third supplementary rule, for
example, says that if the two bodies are of the same size, but
one is moving slightly faster, then it wins the contest, trans-
ferring to the other the minimum amount of speed that ends
the contest.

What is historically important about these supplemen-
tary rules is their conflict with everyday experience.
Descartes recognized that conflict and offered the following
defense:

Indeed, experience often seems to contradict the
rules I have just explained. However, because
there cannot be any bodies in the world that are
thus separated from all others, and because we
seldom encounter bodies that are perfectly solid,
it is very difficult to perform the calculation to
determine to what extent the movement of each
body may be changed by collision with others.

This defense may have been sufficient for Descartes’ follow-
ers, but it challenged others to find rules of impact that
experience does not contradict.

Huygens gets it right

Among those challengers was Huygens, the son of a notable
Dutch political figure whose home Descartes had often visited.
During the 1650s, while still in his twenties, Huygens derived
correct rules for the direct impact of hard spheres. He elected
not to publish them at the time, but during a visit to London
in 1661 he did describe them to various individuals who were
then taking steps toward forming the Royal Society.
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Near the end of 1668, two Englishmen prominent in nat-
ural philosophy and mathematics, John Wallis (1616-1703)
and Christopher Wren (1632- 1723), submitted papers to the
Royal Society presenting rules of impact.!” Wallis addressed
the problem of inelastic collision, and Wren considered per-
fectly elastic collision. At that time Henry Oldenburg, secre-
tary of the Royal Society, solicited a paper on the topic from
Huygens, which arrived in early 1669. It gave the same re-
sults as Wren’s. The Wallis and Wren papers were published
in the 11 January 1669 issue of Philosophical Transactions of the
Royal Society, without mention of Huygens.

Oldenburg had reasons for soliciting Huygens’s paper
beyond what Huygens had said during his 1661 visit to Lon-
don. By the end of the 1660s, the 39-year-old Huygens was
the world’s foremost figure in physics. In the 1650s, he had
produced superior telescopes that had allowed him to dis-
cover Titan, the largest satellite of Saturn. That discovery was
described in his 1659 book Systema Saturnium along with his
realization that Saturn’s strange protuberance, observed for
decades by earlier telescopes, is in fact a ring. By the end of
the 1650s he had also established the isochronism of the cy-
cloidal pendulum, designed cycloidal pendulum clocks of
great benefit to observatories, and used pendulums to meas-
ure the strength of surface gravity to four significant figures.

Huygens was the first foreigner elected as a fellow of the
Royal Society, and, though a Dutch protestant, he was an ac-
ademician of France’s Académie Royale des Sciences from its
inception in 1666. Holland has had the misfortune of pro-
ducing two of the great stars in the history of physics, Huy-
gens and Hendrik Antoon Lorentz, only to see each eclipsed
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by a supernova in his own time: Newton and Albert Einstein.

When Huygens’s paper was not included in Philosophi-
cal Transactions, he published a condensed version in the
8 March 1669 issue of Journal des Sgavans. Recognizing the
slight, Oldenburg quickly published a Latin translation, to-
gether with an explanation of what had transpired, in Philo-
sophical Transactions." This one-and-a-half-page paper solved
the problem of the head-on impact of hard spheres. It ends
with four consequences of that solution:

1. The quantity of motion that two hard bodies
have may be increased or diminished by their
collision, but when the quantity of motion in
the opposite direction has been subtracted
there remains always the same quantity of
motion in the same direction.

2. The sum of the products obtained by multi-
plying the magnitude of each hard body by
the square of its velocity is always the same
before and after collision.

3. Ahard body at rest will receive more motion
from another, larger or smaller body if a third
intermediately sized body is interposed than
it would if struck directly, and most of all if
this [third] is their geometric mean.

4. Awonderful law of nature (which I can verify
for spherical bodies, and which seems to be
general for all, whether the collision be direct
or oblique and whether the bodies be hard or
soft) is that the common center of gravity of
two, three, or more bodies always moves uni-
formly in the same direction in the same
straight line, before and after their collision.

Let us consider these assertions in reverse order: The
fourth states a principle that Newton employed to great ef-
fect in his Principia. The third allows a strong qualitative test
of Huygens’s theory. The second announces what came to be
known as the conservation of vis viva. And the first repu-
diates Descartes’ conservation of motion, but then
substitutes for it a principle of conservation of vectorial
motion—what we now call the conservation of

momentum. But to contrast it with Descartes’ prin-
ciple, let me refer to it as “conservation of direc-
tional motion.”

The full paper in which Huygens derived his

results from basic principles was finally pub-
lished posthumously in 1703. It is a masterpiece.'
The paper proceeds in two stages, dealing re-
spectively with bodies of the same and differing
bulk. The hypotheses from which the derivations
proceed are all ones that Huygens was sure the
Cartesians held. The key hypothesis in the first
half is a principle of relativity:

The motion of bodies and their equal
and unequal speeds are to be under-
stood respectively in relation to other
bodies which are considered as at rest,
even though perhaps both the former
and the latter are involved in another
common motion. And accordingly,

René Descartes (1596-1650).
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Figure 1. Benedict de Spinoza’s illustration of
Descartes’ idea of the conservation of motion. In the
circuit with circular boundaries represented here, if the
channel is four times wider at AC than at B, then the
velocity of flow around the circuit is four times greater
at B than at AC.

when two bodies collide with one another, even
if both together are further subject to another
uniform motion, they will move each other with
respect to a body that is carried by the same com-
mon motion no differently than if this motion,
extraneous to all, were absent.

Huygens used this relativity principle to transform problems
into frames of reference in which solutions emerge straight-
forwardly.

The key hypothesis in the second stage is, “When two
hard bodies meet each other, if, after impulse, one of them
happens to conserve all the motion that it had, then nothing
will be taken from or added to the motion of the other.” From
this hypothesis Huygens derives the pivotal proposition:
“Whenever two bodies collide with one another, the speed of
separation is the same, with respect to each other, as that of
approach.” The argument invokes Torricelli’s principle. The
rhetorical force of Huygens’s paper was to leave those Carte-
sians who opposed its conclusions grasping at straws.

A celebrated problem

Huygens’s contribution to the conservation of what Leibniz
later named vis viva did not end with his work on collision.
In 1673 he published the Horologium oscillatorium.” Aside
from Newton’s Principia, the Horologium is the most impor-
tant work in mechanics of the 17th century. Indeed Newton
modeled the Principia after Huygens’s book. Part IV of the
Horologium solves the celebrated “center of oscillation” prob-
lem posed decades earlier by the French cleric Marin
Mersenne (1588-1648): What is the length of a simple
pendulum with a single bob that beats in unison with a
compound pendulum with two or more bobs along its
(rigid) string?
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Think of a two-bob pendulum. How much does the
lower bob slow the motion that the upper one would have in
its absence, and vice versa? Huygens’s solution proceeded
from two hypotheses: Torricelli’s principle and the claim that
in the absence of resistance “the center of gravity of a rotat-
ing pendulum traverses equal arcs in descending and as-
cending.” From these hypotheses he derived two proposi-
tions that form the basis of his solution:

1. If any number of bodies all fall or rise, but
through unequal distances, the sum of the
products of the height of the descent or ascent
of each, multiplied by its corresponding mag-
nitude, is equal to the product of the height of
the descent or ascent of the center of gravity
of all the bodies, multiplied by the sum of
their magnitudes.

2. Assume that a pendulum is composed of
many weights and, beginning from rest, has
completed any part of its whole oscillation.
Imagine next that the common bond between
the weights has been broken and that each
weight converts its acquired velocity upwards
and rises as high as it can. Granting all this,
the common center of gravity will return to
the same height which it had before the oscil-
lation began.

The height in proposition 1 is a surrogate for the square
of the acquired velocity. The two propositions together thus
impose a relationship between the squares of the velocities
acquired by the individual bobs in falling from their separate
heights and the square of the velocity acquired by the center
of gravity falling from its height. That suffices to solve for the
center of oscillation for point-bobs, which Huygens then gen-
eralized to the center of oscillation of real bobs of several
shapes.

Lagrange attributed the principle of the conservation of
vis viva to Huygens alone, with no mention of Leibniz, citing
Huygens’s solution for the center of oscillation rather than his
earlier solution of the impact problem.? The important point
here is that a principle which emerged initially in the context
of collisions restricted to hard spheres has turned out, in its
more general Galilean form, to make possible the solution of
a recalcitrant problem from an entirely different context.

Leibniz and Newton

Leibniz provoked the vis viva controversy in stages, begin-
ning in 1686 and culminating in 1695. In March 1686, two
years after he had published his groundbreaking paper on
the differential calculus in the new journal Acta Eruditorum,
Leibniz published a short note in that journal entitled “A Brief
Demonstration of a Notable Error of Descartes and Others
Concerning a Natural Law.”*® The thrust of the note was to
reject the Cartesian equivalence between motive force, which
Leibniz agreed is conserved in nature, and quantity of mo-
tion, which he argued is not. His argument proceeded from
two assumptions: (1) a body falling from a certain height ac-
quires the same force that is necessary to lift it to its original
height; and (2) the same force is necessary to raise a body of,
say, 1 pound to a height of 4 feet or a body of 4 pounds to a
height of 1 foot.

Force, taken as the product of the magnitude of the body
and the height from which its velocity can be acquired, is the
same for those two bodies. But the velocity acquired by the
first body, according to Galileo, is twice the velocity acquired
by the second, and hence their quantities of motion are dif-
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Christiaan Huygens (1629-95).

ferent. From this observation Leibniz concluded that “force
is rather to be estimated from the quantity of the effect that
it can produce.”

Leibniz’s 1686 note did not mention vis viva, nor did it
invoke Huygens'’s impact results. It did however conclude by
proposing that the error to which he was calling attention “is
the reason why a number of scholars have recently ques-
tioned Huygens’s law for the center of oscillation of a pen-
dulum, which is completely true.”

Book 1 of Newton'’s Principia, the part that has some bear-
ing on the vis viva controversy, went to the printer in April
1686, too soon for him to have seen the Acta Eruditorum issue
containing Leibniz’s note. Newton surely was aware of the
controversy by the time of the second (1713) and third (1726)
editions of the Principia; yet they never mention it. Never-
theless, parts of Book 1 that remained the same in all editions
did feed the controversy. For example, the conservation of
momentum is presented as a corollary of Newton’s laws of
motion, with Huygens'’s center-of-gravity principle, carefully
defended, as the next corollary.

In his empirical defense of his laws of motion, Newton
indicates how to make corrections for air resistance in meas-
urements of a ballistic pendulum (see figure 2a) to obtain
more exacting tests of theories of collision, and then adds that
similar corrections can be made for imperfect elasticity of the
colliding bodies. Thereby Newton underscores the failure of
mass times velocity squared to be conserved when the bod-
ies are not perfectly hard.

Proposition 40 of Newton’s Principia added another
complication. It showed that Galileo’s principle of path-
independence holds not merely under uniform gravity but for
the general case of motion under centripetal forces of any kind.
That result has the square of velocity no longer proportional
simply to the height of fall but to an integral of the centripetal
force over this height. So, without acknowledging as much,
proposition 40 supports the importance of velocity squared
while making it no longer interchangeable with height of fall.

An important further complication came from Newton’s
conception of motive force. He expressly tied his centripetal
force to Huygens’s centrifugal force from the Horologium.
Huygens had coined vis centrifuga to designate the tension in
a string holding a body in circular motion. It is a static force,
maintaining a state of equilibrium between the string and the
revolving object, entirely akin to the tension in a string re-
taining a vertically suspended weight. Huygens concluded
that, in uniform circular motion, the tension is proportional
to the weight of the object and, in the infinitesimal limit, to
the distance the circle departs from its tangent divided by the
square of the time interval of departure.

That’s exactly what Newton did with his centripetal
force in general curvilinear motion shown in figure 2b, con-
cluding that the force is proportional to the distance QR in
the figure divided, in the infinitesimal limit, by the square of
the time, as represented by the area SP X QT. The difference
is that Newton considered the centripetal force on the object
independent of the equal and opposite force on the mecha-
nism producing it."* Substituting Newton’s mass for Huy-
gens’s weight, we see that both men concluded that the force
in uniform circular motion is proportional to mv? divided by
the radius. Both men tied the notion of force to static forces
in equilibrium, following a usage that had been adopted for
some time.
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Figure 2. Diagrams in Isaac Newton'’s Principia

(a) for adding air-resistance corrections in ballistic-
endulum experiments on the impact of hard spheres

and (b) for determining centripetal force in curvilinear

motion.’
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Bernoulli’s discomfort

Yet another complication came with a 1691 Acta Eruditorum
article by Jacob Bernoulli (1654-1705) on the compound pen-
dulum’s center of oscillation.” Expressing discomfort with
the “obscure hypothesis” from which Huygens had derived
his solution —though not denying it—Bernoulli offered an al-
ternative derivation of the same result by replacing Huy-
gens'’s hypothesis with the principle of the lever.' That prin-
ciple, unlike Huygens’s, is one of static equilibrium, invoking
only static forces and what we now call virtual displace-
ments. Bernoulli used it to obtain an equilibrium condition
along the pendulum’s rigid string that yields the quantities
of motion transferred from one bob to another.

The center-of-oscillation problem received continuing
attention in the 18th century. As Lagrange pointed out in his
opening chapter on dynamics, Newton’s three laws, while
adequate for the motion of point masses, are not by them-
selves enough to yield a solution to that problem. The ques-
tion then, which Bernoulli had initiated, concerned what fur-
ther principle is to be preferred for solving the compound
pendulum problem and a host of related ones. The list of can-
didates besides Huygens’s vis viva principle included Jean
d’Alembert’s generalization of the Bernoulli principle, Leon-
hard Euler’s principle of the moment of momentum, and
Pierre de Maupertuis’s principle of least action.

Forces living and dead

Leibniz’s 1686 note provoked exchanges with the Cartesians.
Descartes’ conservation of motion (see figure 1) was difficult
to abandon if one believed that all space is filled with matter.
The exchanges led Leibniz to refine his position in writings
on “dynamics” (the term is his) that were not published until
the 19th century.”” In those writings Leibniz grants the con-
servation of directional motion, but argues that because it is
directional, unlike mv?, it involves reference to other bodies
and therefore is not a feature of each body taken unto itself.
He concedes that mv? is not obviously conserved in the colli-
sion of soft bodies. But he contends that it is actually con-
served via undetected motion of the microphysical parts of
the bodies.

Leibniz published one paper on his “new science of dy-
namics.”*® Entitled “Specimen dynamicum,” it appeared in
1695. There he introduced vis viva as part of a distinction be-
tween living and dead force. His examples of dead force in-
cluded “centrifugal force and gravitational or centripetal
force,” along with the forces involved in static equilibrium
that, when unbalanced, initiate motion.

“The ancients,” he remarks, “so far as is known, had
conceived only a science of dead forces, which is commonly
referred to as Mechanics, dealing with the lever, the wind-
lass, the inclined plane.” Such forces are indeed proportional
to the product of bulk and velocity, because “at the very com-
mencement of motion” the space covered varies as the
velocity. Living force, which appears in impact, “arises from
an infinite number of constantly continued influences of
dead forces.”

Invoking the metaphysical principle that the effect must
equal the cause, Leibniz gave a variant of his 1686 argument:
He calculated “the force through the effect produced in using
itself up” to conclude that the force transferred from one
equal body to another varies as the square of the velocity. Leib-
niz made clear that the metaphysical principle is what estab-
lishes the priority of the conservation of living forces in
changes of motion.
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The vis viva controversy that the 18th century inherited
from the 17th did indeed concern which quantities are uni-
versally conserved: Descartes” motion, Leibniz’s vis viva, or
what we now call momentum. The controversy continued for
so long because it involved several further issues. One was
the semantic issue of what the term “force” should designate.
Less tractable, though not less productive of confusion, was
the metaphysical issue Leibniz raised. Then there was the
vexing empirical issue of the apparent nonconservation of vis
viva in the collision of soft bodies.

Much of the study of motion in the 18th century focused
on specific problems and on principles from which their
mathematical solutions could be derived. The failure of vis
viva for soft bodies raised concerns about when that princi-
ple could safely be applied. And finally, there was the issue
raised by Bernoulli: Was it appropriate to take the vis viva
principle as axiomatic even in cases where it does give the
right answer —let alone, as Leibniz urged, taking it to be fun-
damental to all of mechanics? Little wonder, then, that the
controversy lasted so long.
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