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Swift,5 provides a striking look at de-
tails of the compact-object merger
that presumably triggered it. Figure 2
shows BAT’s record of gammas de-
tected in the first few minutes. A hard-
gamma spike at 0.1 s is followed by
softer-gamma emission with a second
prompt peak at 1.1 s and a faint late
enhancement—similar to the one
HETE found—centered at about 80 s.

The burst’s x-ray afterglow, recorded
by Swift’s XRT and eventually by
Chandra, allowed ground-based tele-
scopes to find optical and radio after-
glows and confirm that the host was an
old elliptical galaxy at z = 0.26 with
very little star formation.6

Surpisingly, the steady fading of
the x-ray afterglow after the first two
seconds was interrupted by three
flare-ups. The first, similar to HETE’s
unexpected finding, peaked at about
one minute, and the last came six
hours later. “Such an extended sce-
nario of activity is hard to reconcile
with model simulations of a fast, clean
merger of two neutron stars,” says

Gehrels. Instead, the Swift team ar-
gues, the episodic flaring may well in-
dicate the stretching, breaking, and
piecemeal consumption of a neutron
star by a black-hole partner several
times its mass.

The supernova scenario explains
why long GBRs should be strongly col-
limated. But compact-object merger
models are less clear about collimation
of short GRBs.7 Evidence from the 
24 July burst is contradictory: A break
in the slope of the infrared light curve6

a day after the burst suggests collima-
tion with an opening angle of about
10°. But the apparent absence of a cor-
responding break in Chandra x-ray
data casts doubt on that collimation.

If the short GRBs are generally not
collimated, then their energy output
in gammas is not very much less than
the 1051 ergs typical of the long GRBs.
Such high energies are not obviously
inconsistent with merger models. If,
as now seems likely, the short GRBs
are indeed caused by mergers of com-
pact objects, their collimation is an

important issue for estimating the
rate at which an upgraded LIGO grav-
itational-wave detector should expect
to detect signals from such mergers. 

Happily the localization of three
short GRBs in just three months holds
out the hope that astrophysicists will be
able to confront their merger scenarios
with many more bursts in the near fu-
ture. In fact, a very faint short GRB, de-
tected by Swift on 13 August, has been
tentatively localized to a cluster of
galaxies at a redshift of 0.7, much far-
ther away than its three predecessors.  

Bertram Schwarzschild
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Order Parameter of the Chiral Potts Model Succumbs
at Last to Exact Solution

The statistical theory of phase
changes in solids and liquids in-

volves formidable mathematical prob-
lems.” Thus Lars Onsager began his
1944 magnum opus on the two-di-
mensional Ising model. As if to justify
his opening line, he filled the 33 pages
that followed with the exposition of a
new algebra and the derivation of a
crystal’s specific heat, partition func-
tion, and critical temperature.1

The Ising model started life in 1925
as a simple one-dimensional quantum
mechanical model of ferromagnetism.
Each spin in a chain interacts with its
two nearest neighbors and aligns with
them, or not, depending on the inter-
action energy, the temperature, and
chance.

Onsager generalized the Ising
model to two dimensions, but his 1944
paper didn’t address what was in a
sense the model’s original raison
d’être: a solution for the spontaneous
magnetization or its dimensionless
equivalent, the order parameter M.
He presented a solution without a der-
ivation in 1949. Three years later, C.
N. Yang set out to prove it.2 After

working six months on the longest cal-
culation of his life, Yang wrote up his
analysis and gave, in equation 96, an
expression of alluring simplicity:

M ⊂ (1 ⊗T 2)1/8,

where T represents a dimensionless
temperature.

Now, in an effort that lasted 15
years, Rodney Baxter has solved the
order parameter of a further general-
ization of the Ising model known as
the chiral Potts model.3 Baxter retired
three years ago from the Australian
National University in Canberra. Al-
though the physical and mathemati-
cal implications of his solution aren’t
clear yet, its derivation, says Fred Wu
of Northeastern University in Boston,
represents “one of the greatest feats in
the field of exactly solved models.”

Scalar and chiral
In 1952, Cyril Domb asked his grad-
uate student Renfrew Potts to tackle
an N-state extension of the Ising
model in which like spins are ener-
getically favored. Potts derived a du-
ality relation between the model’s

low- and high-temperature behavior,
but no one has found a general solu-
tion. Only at the critical temperature
have the model’s properties been cal-
culated.

In 1974, Wu and Y. K. Wang added
a further generalization to what be-
came known as the Potts model: a de-
pendence of the interaction energy on
direction. The need for such a model
became clear a few years later when
experimenters began looking at the
melting and freezing of atomic mono-
layers on crystalline surfaces.

As the temperature drops in those
systems, the liquid layer orders itself
into domains that either line up with
the substrate structure or follow the
layer’s own ordering. At certain con-
centrations, equilibrium phase transi-
tions occur between those so-called
commensurate and incommensurate
phases.

The theorists who tried to under-
stand those transitions, among them
Stellan Östlund, David Huse, and
Michael Fisher, developed and ex-
plored so-called chiral versions of the
2D Potts model in which the interac-
tion between neighboring spins differs
depending on whether the neighbors
lie on the x- or y-axis of the lattice. As
first formulated, the models success-
fully captured much of the essential

Exact solutions are prized because they can be used to compare theory
with simulation and experiment without ambiguity. Finding them has
sometimes proved arduous.
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physics, but had too many parameters
to be solved generally and exactly.

Mathematically, 2D lattice models
resemble 1D spin chains in that near-
est-neighbor interactions are repre-
sented by so-called transfer matrices.
In 1982, Steven Howes, Leo Kadanoff,
and Marcel den Nijs investigated the
properties of a three-state 1D quan-
tum spin chain whose 2D counterpart
is the chiral Potts model. Using a se-
ries expansion up to 13 orders, they
charted the chain’s phase diagram.4

To their surprise, along one line in the
diagram the expectation value of the
magnetization reduced exactly to a
value proportional to (1 ⊗ T 2)1/9.

When Günter von Gehlen and
Vladimir Rittenberg saw the result,
its simplicity struck them as too pe-
culiar to belong only to the three-state
case. In 1985, they analyzed the gen-
eral N-state chain and found that the
two components of its Hamiltonian
have certain simplifying and attrac-
tive commutations.5

Higher-genus
The translation back from quantum
spin chains to square lattices took
place at SUNY Stony Brook in 1986.
Helen Au-Yang, Barry McCoy, and
Jacques Perk were trying to account
for the values of certain exponents in
minimal models of conformal field
theory. By chance and diligence, they
found a chiral Potts model whose
transfer matrices commute not only
with each other but also with a related
spin-chain Hamiltonian.6 They also
found a generalization of von Gehlen
and Rittenberg’s N-state spin chain.

The commutivity is important be-
cause, along with other conditions, it
implies that the model is integrable
and can be solved exactly. But along
with the commutivity came a star-
tling and troubling discovery.

In integrable 2D models, it’s con-
venient to parameterize the degree of
anisotropy using two so-called spec-
tral variables p and q. Each pair of p
and q corresponds to a particular
model and a pair of points on a Rie-
mann surface.

Riemann surfaces are classified by
genus. Surfaces of genus 0 have no
handles or holes and the equations
that relate p and q are trigonometric.
For genus 1, the equations are ellip-
tic. Though complicated, elliptic equa-
tions are tractable thanks to Niels
Henrik Abel, Carl Jacobi, and their
fellow algebraic geometers of the past
century and a half.

The Stony Brook researchers found
their integrable three-state chiral
Potts model had a genus of 10. At that
time, string theorists were struggling

with equations of genus 2. “For even
looking at genus 10, we were
ridiculed,” Perk recalls.

In 1987, Baxter invited Au-Yang
and Perk to visit ANU. By then, Bax-
ter had exactly solved a host of lattice
models of increasing complexity and
generality. He, Au-Yang, and Perk set
to work on chiral Potts and derived el-
egant and compact expressions for the
model’s interaction energies.7

Using those energies, McCoy, Perk,
and Tang, together with Giuseppe Al-
bertini studied the integrable N-state
chiral Potts model. Like Howes,
Kadanoff, and den Nijs, they derived
a series expansion.8 In the words of
their paper, they found that “all the
available evidence supports the con-
jecture that M ⊂ (1 ⊗ T 2)b.” Here, b ⊂
n(N ⊗ n)/2N2 and n is any integer
from 1 to N ⊗ 1. Baxter took up the
challenge of proving the conjecture.

The quest begins
Despite the problem’s high genus,
Baxter first applied the battery of el-
liptic methods that had worked for
problems of lower genus. But even his
most sophisticated method, corner
transfer matrices, failed.

The first hint of a way out of the

impasse came in 1993. Michio Jimbo,
Tetsuji Miwa, and Atsushi Naka-
yashiki of Kyoto University in Japan
developed a new method9 and applied
it to an Ising generalization that Bax-
ter had worked on in the 1970s called
the eight-vertex model. When Baxter
tried to solve the chiral Potts order pa-
rameter with the Kyoto method, his
analysis stopped short of a solution,
but ended in a set of general func-
tional equations. Going from those
general equations to a specific proof
took 11 years.

The main obstacle was analyticity.
By working with a large, finite lattice,
Onsager could take the thermody-
namic limit of, say, the heat capacity
by setting the number of spins to in-
finity right at the end of the calcula-
tion. In the Kyoto and other methods,
one takes an infinite limit in the be-
ginning. Analyticity is less secure. 

Baxter’s breakthrough came over
two days in December 2004. It’s diffi-
cult to explain, but boils down to rec-
ognizing which topological manipula-
tions and algebraic simplifications
would preserve the symmetry of the
problem while at the same time es-
tablishing its analyticity.

When McCoy wrestled with prov-

Potts models, both scalar and chiral, have been used to study melting and crys-
tallization on surfaces. In this simulation, the colors represent six different orien-
tations of subgrains that form within grains (outlined in black). Another applica-
tion of Potts models appears on the cover. (Courtesy of Paul Bons, University of
Tübingen.)
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ing his own conjecture, he would os-
cillate between two extremes: Is the
machinery of 150 years of algebraic
geometry useful or is it not? “The clear
answer that Baxter has given us,” he
says, “is that algebraic geometry is
unnecessary.” 

What other answers does the solu-
tion point to? ANU’s Murray Bachelor
points out that the exactly solved
models of the 1960s and 70s prompted
the discovery of quantum groups,
which in turn led to new insights into
low-dimensional topology, representa-
tion theory, and knot invariants. “We
can only begin to speculate on which
new areas these latest developments
will inspire,” he says.

One area could be string theory. In
the four dimensions our universe ap-
pears to possess, the string equations
are genus 2 and higher. Theorists
avoid the attendant mathematical
complexity by working in 10 dimen-
sions, where they can solve equations
perturbatively. Baxter’s coup shows
that at least one genus-10 problem
can be solved without having to use a
genus-10 method.

Max Dresden, the physicist and
historian of science, once observed:

Models in statistical mechanics
are like études in music. They
could be finger exercises to im-
prove one’s technique, or they
could be like Chopin’s études
and acquire a life and impor-
tance (and charm) of their own.

Whatever the eventual importance
and charm of the chiral Potts model,
Baxter’s fingers, after 15 years spent
on its order parameter, are thoroughly
exercised.

Charles Day

References
1. L. Onsager, Phys. Rev. 65, 117 (1944).
2. C. N. Yang, Phys. Rev. 85, 808 (1952).
3. R. J. Baxter, Phys. Rev. Lett. 94,

130602 (2005); J. Stat. Mech. (in
press).

4. S. Howes, L. P. Kadanoff, M. den Nijs,
Nucl. Phys. B 215, 169 (1983).

5. G. von Gehlen, V. Rittenberg, Nucl.
Phys. B 257, 351 (1985).

6. H. Au-Yang, B. M. McCoy, J. H. H.
Perk, S. Tang, M.-L. Yan, Phys. Lett. A
123, 219 (1987).

7. R. J. Baxter, J. H. H. Perk, H. Au-
Yang, Phys. Lett. A 128, 138 (1988).

8. G. Albertini, B. M. McCoy, J. H. H.
Perk, S. Tang, Nucl. Phys. B 314, 741
(1989).

9. M. Jimbo, T. Miwa, A. Nakayashiki, J.
Phys. A 26, 2199 (1993).

10. M. Dresden, in Twentieth Century
Physics, vol. 1, L. M. Brown, A. Pais,
B. Pippard, eds., Institute of Physics,
Bristol, UK, American Institute of
Physics, New York (1995), p. 603. �


