deputy administrator for defense programs, addresses the issues of manufacturing capacity and pit longevity. The starting point for APS's Panel on Public Affairs (POPA) discussion paper *The Modern Pit Facility*¹ was NNSA's June 2003 draft environmental impact statement (EIS) on the proposed construction of a modern pit facility.²

The draft EIS specified an MPF with a single-shift production capacity of up to 450 plutonium pits per year and a construction schedule that assumed that the pits currently in the US stockpile will need replacement when they are 45 years old.

The APS panel questioned those assumptions and actively sought appropriate input. NNSA-supported scientists contributed significantly to our analysis and NNSA officials had draft copies of our report in October 2003. The report then underwent the APS approval process, while NNSA revised its analysis. In its February 2004 report to Congress, NNSA lowered the MPF base production capacity to 125 pits per year and raised the assumed pit longevity to 60 years. NNSA changed its capacity and longevity assumptions in a man-

ner consistent with the POPA report.

Beckner also criticizes the POPA recommendation for an outside feasibility study of increasing the capacity of the existing pilot pit production line in the TA-55 facility at Los Alamos National Laboratory. We made that recommendation because NNSA has backed away, without adequate explanation, from its own estimate that the single-shift production capacity at TA-55 could be increased to 50–80 pits per year and, with an added wing, to 150 pits per year.

Perhaps the most important contribution of the POPA paper was to point out that, although a production facility is necessary, its requirements need careful reexamination, and the possibility of early production of pits at TA-55 offers considerable leverage. Congress recently suspended fiscal year 2005 funding for MPF site selection and requested a report on production requirements. That wise course of action is recognition that the need for an MFP is not urgent and there is adequate time to explore key science issues relating to pit longevity.

References

1. The Modern Pit Facility, April 2004,

- http://www.aps.org/public_affairs/popa/reports.
- US Department of Energy, National Nuclear Security Administration, Modern Pit Facility Draft Environmental Impact Statement, NNSA, Washington, DC (4 June 2003). Available at http://www.mpfeis.com.

Steve Fetter
(sfetter@umd.edu)
University of Maryland
College Park
Frank N. von Hippel
(fvhippel@princeton.edu)
Princeton University
Princeton, New Jersey

Cause and Effect in Global Warming

read Phillip Morrison's review of Spencer R. Weart's book, *The Discovery of Global Warming*, in the June 2004 issue of PHYSICS TODAY (page 60). Weart's book contains four graphics and other evidence that apparently convinces Morrison of global warming's causes.

There is evidence of increasing global temperatures and increasing atmospheric carbon dioxide concentrations. Morrison is convinced that

PRECISION MEASUREMENT GRANTS

The National Institute of Standards and Technology (NIST) expects to make two new Precision Measurement Crants that start on 30 September 2005. Each grant is in the amount of \$50,000 per year and may be renewed for two additional years for a total of \$150,000. They are awarded primarily to faculty members at U.S. universities or colleges for research in the field of fundamental measurement or the determination of fundamental physical constants.

Applications must reach NIST by 4 February 2005. Details are on the Web at: physics.nist.gov/pmg.

For further information contact:

Dr. Peter J. Mohr, Manager
NIST Precision Measurement Grants Program
NIST, Building 221, Room A267
100 Bureau Drive, Stop 8420
Gaithersburg, MD 20899 8420
301-975-3217

NST

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

- *Three gruges on a single probe with a 2 SA* flange.
 *Continuous monitoring protects the flanment and multiplier.
- "All is recorded. All is protected. All is monitored.
 "Automorphy, high stability, and high sensitivity.

Find out about the best RGA at:

www.extorr.com

Hoosmayoony is 300 mm. All mayoo sinstat Laum. Edian look emistra diay mamus menewementanine.

Complete XT100 \$3450

307 Columbia Romi New Kensington, PA I 5053

Tel 200-200-2201 ov 734-337-3000 | | Fase 7.24-3.37-2.300 one causes the other but never mentions whether Weart says which is the cause and which the effect, or whether he gives evidence to support either case. Solid science, though, does support one case.

It is widely known that the largest single repository of CO₂ on Earth is the oceans, and that the solubility of CO₂ in water drops as the water temperature increases. So clearly a mechanism exists whereby increasing ocean water temperatures (which is where most of the solar energy goes) causes increased outgassing of CO₂ into the atmosphere. Furthermore, Arctic permafrost zones revert to marshy peat bogs when the Arctic warms, and then bacterial activity takes hold and converts decaying ancient vegetation into atmospheric CO₂. Both of those processes are happening right now.

The Russian Vostok ice cores going back 420 000 years and the Dome-C ice cores going back 730 000 years show that the Antarctic ice sheet has not melted during that time frame, even in the warmest interglacial periods. The ice cores also show periods of rapid global warming accompanied by rapidly increasing atmospheric CO₂.

Now we know that our sportutility vehicles did not cause all those CO₂ increases back then, but we do understand how global warming causes them. So perhaps Weart can tell us conclusively which of the two is the cause and which the effect; the ice cores seem to give us the answer.

By the way, when floating sea ice melts, Archimedes would insist that the level does not change; in particular, it does not go up. That takes care of gravitational energy, but the melting of all that sea ice extracts astronomical quantities of latent heat from the surrounding ocean water and lowers the mean ocean temperature; so the level will go down, not up. And I can suggest a very illuminating experiment for anyone who believes that heat to melt sea ice does not come from the surrounding ocean.

George E. Smith (gsmith@agilent.com) Sunnyvale, California

Weart replies: Earth's climate system involves many basic phenomena—science teachers should note how that could be used to spark interest! George Smith's letter shows some ways a tempera-

ture rise can cause CO_2 emissions. Such feedbacks are worrisome, because they could accelerate warming once it is initiated.

What initiated the current warming? It took many decades for scientists to agree on the most likely answer. The crucial observation was the recent atmospheric CO_2 increase, whose rate and magnitude are vastly beyond anything in the ice core record. The steep climb neatly matches calculations of the rise expected from the known consumption of fossil fuels. The calculations include estimates of gas exchanges with the oceans, tundra, forests, and so forth: estimates checked through many measurements—for example, of carbon isotopes. The oceans are found to be a net absorber, transporting carbon into their depths. Net biosphere output, although harder to estimate, is certainly dominated at present by emissions due to human activities.2

Sea ice will melt provided the greenhouse effect adds enough energy to the planet to warm the seawater even while the ice melts. A temperature increase has been observed, and will bring sea-level rise through thermal expansion.

References

- 1. Spencer Weart, *The Discovery of Global Warming*, Harvard U. Press, Cambridge, MA (2003). For additional material, see http://www.aip.org/history/climate.
- 2. Intergovernmental Panel on Climate Change, Climate Change 2001: The Scientific Basis, J. T. Houghton et al., eds., Cambridge U. Press, New York (2001), online at http://www.grida.no/climate/ipcc_tar.

Spencer Weart

(sweart@aip.org) American Institute of Physics College Park, Maryland

Even in Translation, Richter's 'Science' Unimpressive

aving read the exchange of letters about the value of Ronald Richter's nuclear fusion work in Bariloche, Argentina, in the early 1950s (PHYSICS TODAY, August 2003, page 12, and March 2004, page 14), I thought it unfortunate that most challenges to Richter's results are in Spanish. Analyses appear in two reports from the scientific panel that Juan Perón's government appointed

to evaluate the project after Richter's erratic behavior became apparent.¹

The first report, by physicist José A. Balseiro, challenges Richter's physical ideas and shows with order-of-magnitude calculations that the proposed method is unfeasible. Perhaps more to the point regarding the plasma physics involved is the second report, written by electrical engineer Mario Bancora, which describes the apparatus Richter used. I have translated the last paragraphs of Bancora's report:

The device used by Dr Richter is the singing arc discovered by [William Du Bois] Dudell² about 50 years ago. The negative resistance of this arc neutralizes the positive resistance of an oscillating circuit, which is completed by a "control" impedance and two condensers of one microfarad each. connected in parallel, which are close to the reactor. This gives rise to a series of sustained oscillations whose frequency depends on that of the resonant circuit. These oscillations could be at a frequency low enough to be in the audible range (hence the singing arc) or they can be supersonic (which is the origin of the ultrasounds claimed by Dr Richter). By incorporating a magnetic field, and adding gas, hydrogen for example, to cool the arc, it is possible to enhance the frequency considerably, to around 300 000 Hz. With exactly this setup, [Valdemar] Poulsen, in the early days of radio communications, could achieve transmissions over more than 500 km.3

These arcs emit light high in the ultraviolet, as well as centimeter-wavelength sound, which together with the intense electromagnetic perturbations produced are particularly effective in activating the Geiger counters. The increase in response obtained when introducing hydrogen is simply due to the increase in frequency produced by this means, according to Poulsen's experiments.

To be absolutely sure, I have repeated this experiment in my own laboratory and have obtained the same results, that is: a) the same type of oscillations in the screen of an oscilloscope connected to an exploration coil and b) detection by a recorder connected to a Geiger counter located 1.5 m from the arc.