observer assume that the internal processes of the wiffle ball are random? No, what we have is a deterministic problem with an infinite number of initial conditions. The behavior is describable only statistically, but is not due to random processes. Statistical behavior at any level is not proof of randomness in the physical world.

Joe Lacetera

(lacetera@msti-md.com) MSTI Inc Bel Air, Maryland

ilczek replies: Each correspondent has a valid point. I enthusiastically agree with Marcia Bjørnerud: The nonuniversal problems that arise in describing our specific place in the world are not only valid but often fascinating and important. I was building toward this major point in the entire series, and it was emphasized explicitly in the final sentence: "Such necessary concessions to reality compromise the formal purity of the ideal of understanding the world by analysis and synthesis, but in compensation, they allow its spirit much wider scope."

I also agree with Joe Lacetera, though more reservedly. The idea that the statistical aspect of quantum theory might reflect our incomplete comprehension of an underlying deterministic theory has had some extremely eminent champions, from Albert Einstein at the beginning to Gerardus 't Hooft today. It is a difficult program, however, since the success of quantum theory is broad and deep, especially in the atomic and subatomic realms. I'd be more optimistic about finding surprises in the recent, promising, but relatively poorly tested application of quantum theory to cosmology, as I mentioned in the column: "We can test the hypothesized quantum origin of primordial fluctuations by checking whether those fluctuations satisfy statistical criteria for true randomness."

Frank Wilczek

Massachusetts Institute of Technology Cambridge

Shapley and Hubble: Different Views Brought Galaxies Into Focus


The existence of galaxies beyond the outer limits of our Milky Way system has only become a certainty within the last century. Much of the credit for that discovery goes to

Edwin Hubble and Harlow Shapley, who were, in many respects, the two outstanding early 20th-century US astronomers most devoted to the study of external galaxies. Both were born in rural Missouri; Shapley in November 1885 and Hubble in November 1889. As soon as they had obtained their doctorates, both were hired by George Ellery Hale to work at Mount Wilson Observatory in California.

Both men entered astronomy almost by chance. Hubble started out by training as a lawyer. Perhaps his legal training contributed to the clear and convincing way in which he presented scientific arguments. Shapley began his career as a journalist; that training made many of his articles and books a joy to read.

In 1918, Shapley used observations of the distribution of globular clusters to establish that the center of our galaxy was located in the constellation Sagittarius.1 We now know that his estimated distance of 17-25 kiloparsecs to the galactic center was larger than the actual distance of 8 kpc. Shapley was unaware of the existence of interstellar dust, which makes clusters appear dimmer, and hence more distant, than they really are. His discovery that the Sun is located far from the center of our galaxy had an impact on human thought similar to the paradigm shift caused by Copernicus's change from a geocentric to a heliocentric model for the universe. Jan Oort in the Netherlands and Bertil Lindblad in Sweden were subsequently able to show that the Milky Way system is in differential rotation around the galactic center in Sagittarius; they thus supported Shapley's discovery.

With Adelaide Ames, Shapley discovered and studied large-scale structure in the universe;2 that work turned out to have a profound influence on modern theories of the universe's early evolution. Surprisingly, large-scale structure never appears to have attracted Hubble's interest. In his monumental study of the distribution of galaxies, Hubble concluded that, after correction for the effects of dimming by dust in the galactic foreground, the distribution of galaxies is essentially uniform on large scales. Furthermore, he found that counts of the surface distribution of galaxies were essentially Gaussian in $\log N$, where N is the number of galaxies per square degree in the sky. Perhaps Hubble obtained the result he wanted (and so

More Powerful. **Less Complex.**

We offer the widest range of high-speed digitizers available on the market today:

- Up to 5 GS/s A/D sampling
- 8, 12, 14 or 16 bit resolution
- Up to 2 GB on-board acquisition memory
- Available in PCI and CompactPCI/PXI formats
- LabVIEW, LabWindows/CVI, MATLAB, and C/C++ SDKs

www.gage-applied.com

Toll-Free: 1-800-567-4243 Tel: 514-633-7447 Fax: 514-633-0770 prodinfo@gage-applied.com