Light’s Orbital Angular

Momentum

The realization that light beams can have quantized orbital
angular momentum in addition to spin angular momentum
has led, in recent years, to novel experiments in quantum
mechanics and new methods for manipulating microparticles.

Miles Padgett, Johannes Courtial, and Les Allen

ike all wave phenomena, light has mechanical proper-

ties. Johannes Kepler suggested that comet tails al-
ways point away from the Sun because light carries linear
momentum. In 1905, John Poynting developed the theory
of electromagnetic radiation pressure and momentum den-
sity and, in 1921, Albert Einstein showed that Planck’s
blackbody law and the motion of molecules in a radiation
field could be explained if the linear momentum of a pho-
ton is 7k. (The wave number k& = 27/ and # = h/27, where
A is the wavelength and 4 is Planck’s constant.) In modern
times, light’s linear momentum has been directly exploited
for trapping and cooling atoms and molecules.

It was also Poynting who, in 1909, realized that po-
larized light has angular momentum—spin angular mo-
mentum, associated with circular polarization. For a sin-
gle photon, it has a value of +%. The idea of light’s orbital
angular moment came only much later: In 1992, a group
at Leiden University in the Netherlands that included one
of us (Allen) recognized that light beams with an az-
imuthal phase dependence of exp(—i{¢) carries an angu-
lar momentum independent of the polarization state.! The
angle ¢ is the azimuthal coordinate in the beam’s cross
section, and ¢ can take any integer value, positive or neg-
ative. This orbital angular momentum, they predicted,
would have a value of L = ¢4 per photon. Just as with cir-
cularly polarized light, the sign of the orbital angular mo-
ment indicates its handedness with respect to the beam
direction.

For any given ¢, the beam has ¢ intertwined helical
phase fronts, as illustrated in figure 1. A feature of helically
phased beams is that the phase singularity on the beam
axis dictates zero intensity on the axis. Therefore the cross-
sectional intensity pattern of all such beams has an annu-
lar character that persists no matter how tightly the beam
is focused. The on-axis singularity is a specific instance of
phase dislocation, the general literature for which is recent,
extensive, and beyond the scope of this article.?

The concept of optical orbital angular momentum of
light is not altogether new. It is well known that multipo-
lar transitions can produce radiation that carries orbital
angular momentum. But such processes are rare and re-
late, in the visible, to a few “forbidden” atomic and molec-
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ular transitions. What’s new and ex-
citing is that it is now possible to pro-
duce, rather easily, laboratory light
beams with quantized orbital angular
momentum. These beams can be used
to investigate all the analogues of po-
larized light. For example, one can
look for a photon analogue of the
spin—orbit coupling of electrons and,
quite generally, to search for new optical interactions.

Optical angular momentum

To a considerable extent, one can understand light’s mo-
mentum properties without reference to photons. A care-
ful analytic treatment of the electromagnetic field gives
the total angular momentum of any light field in terms of
a sum of spin and orbital contributions.! In free space, the
Poynting vector, which gives the direction and magnitude
of the momentum flow, is simply the vector product of the
electric and magnetic field intensities. For helical phase
fronts, the Poynting vector has an azimuthal component,
as shown in figure 1. That component produces an orbital
angular momentum parallel to the beam axis. Because the
momentum circulates about the beam axis, such beams are
said to contain an optical vortex.

The most common form of helically phased beam is the
so-called Laguerre—Gaussian (LG) laser mode. In general,
lasers emit a beam that gradually expands as it propa-
gates. The magnitude and phase of the electric field at dif-
ferent positions in the cross section are described by a
mode function. For most laser beams without helical phas-
ing, that function is the product of a Hermite polynomial
and a Gaussian. Hermite—Gaussian (HG) modes have sev-
eral intensity maxima, depending on the order of the poly-
nomials, arrayed in a rectilinear pattern and separated by
intensity zeros.

The cylindrical LG modes have an explicit exp(—if¢)
phase factor. That makes them the natural choice for the
description of beams carrying orbital angular momentum.
Although LG modes have been produced directly in laser
systems,? they are more easily produced by the conversion
of HG beams.

Generating the beams

Spin angular momentum depends only on the polarization
of the beam, not on its phase. Therefore both HG and LG
beams can possess spin angular momentum. Beams car-
rying spin angular momentum are readily produced by
using a quarter-wave plate to convert linearly into circu-
larly polarized light. The Leiden group introduced an anal-
ogous trick with cylindrical lenses to transform an HG
beam with no angular momentum into a LG beam that car-
ries orbital angular momentum (see figure 2).*

Although this conversion process is highly efficient,
each LG mode does require a particular initial HG mode.
That requirement limits the range of LG modes one can
produce. Consequently, the most common method for cre-
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Figure 1. Orbital angular momentum of a
light beam, unlike spin angular momentum,
is independent of the beam’s polarization. It

arises from helical phase fronts (left col-
umn), at which the Poynting vector (green
arrows) is no longer parallel to the beam
axis. At any fixed radius within the beam,
the Poynting vector follows a spiral trajec-
tory around the axis. Rows are labeled by ¢,
the orbital angular-momentum quantum
number. L = €% is the beam’s orbital angular
momentum per photon. For each ¢, the left
column is a schematic snapshot of the
beam’s instantaneous phase. An instant later,
the phase advance is indistinguishable from
a small rotation of the beam. By themselves,
beams with helical wavefronts have simple
annular intensity profiles (center column).
But when such a beam is made to interfere
with a plane wave, it produces a telltale
spiral intensity pattern (right column).

The number of spiral arms equals the
number € of intertwined helical phase
fronts of the helical beam.

ating helical beams has been the use of
numerically computed holograms. Such
holograms can generate beams with any de-
sired value of orbital angular momentum
from the same initial beam (see figure 3).
The requisite hologram can be formed by
recording, onto photographic film, the in-
terference pattern between a plane wave
and the beam one seeks to produce. Illumi-
nating the resulting hologram with another
plane wave produces a first-order diffracted
beam with the intensity and phase pattern
of the desired beam.

The holographic approach can take ad-
vantage of the high-quality spatial light
modulators (SLMs) that have recently be-
come available. These pixelated liquid-crystal devices take
the place of the photographic film. Furthermore, numeri-
cally calculated holographic patterns can be displayed on
an SLM. These devices produce reconfigurable, computer-
controlled holograms that allow a simple laser beam to be
converted into an exotic beam with almost any desired
phase and amplitude structure. And the beam pattern can
be changed many times per second to meet experimental
requirements. Figure 3 shows how a comparatively simple
“forked” holographic pattern can transform the plane-
wave output of a conventional laser into a pair of LG beams
carrying orbital angular momentum.® In recent years,
SLMs have been used in applications as diverse as adap-
tive optics, real-time holography, and optical tweezing.

Unlike spin angular momentum, which has only two
independent states corresponding to left- and right-
handed circular polarization, orbital angular momentum
has an unlimited number of possible states, corresponding
to all integer values of €. Although the link between spin
angular momentum and circular polarization is clear, the
link between orbital angular momentum and other ways
of describing the beam is less obvious. It’s tempting, for ex-
ample, to directly associate the orbital component to the €-
value of an optical vortex; but that’s wrong. Because the
center of the vortex is a position of zero optical intensity,
it carries neither linear nor angular momentum. Instead,
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the angular momentum is associated with regions of high
intensity, which for an LG mode is a bright annular ring.

That association is well illustrated by a recent exper-
iment by Lluis Torner and coworkers at the University of
Catalonia in Barcelona, Spain.® They showed that, after
the beam passes through the focus of a cylindrical lens, the
azimuthal component of the linear momentum near the
vortex center is reversed, but the total orbital angular mo-
mentum of the beam remains unchanged. The reversal of
the vortex is simply image inversion in geometrical optics;
it has no implications for orbital angular momentum.

Orbital angular momentum arises whenever a beam’s
phase fronts are not perpendicular to the propagation di-
rection. In the approximation of geometric optics, one
would say that the light rays that make up the beam are
skewed with respect to its axis. Simplistic as it is, this
skewed-ray model predicts the correct result in most ex-
perimental situations.

Measuring the angular momentum of a light beam is
not easy. The first demonstration of the transfer of spin an-
gular momentum from a light beam was carried out in
1936 by Richard Beth at Princeton University.” The ex-
periment was extremely demanding. A suspended quarter-
wave plate took angular momentum from a circularly po-
larized beam. The plate’s macroscopic size and
corresponding high moment of inertia, however, meant
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Figure 2. A pair of cylindrical lenses can
serve as a converter that transforms a
Hermite—Gaussian (HG) mode into a La-
guerre-Gaussian (LG) mode carrying orbital
angular momentum, much as a quarter-wave
plate converts linearly polarized light to circu-
lar polarization. Because the same lens pair
works for any HG mode, it can produce a
wide range of LG modes. Increasing the sepa-
ration between the cylindrical lenses can re-
verse the handedness of the LG mode, just as
a half-wave plate reverses circular polariza-
tion. In practice, LG reversal is more conve-
niently achieved with an image inverter such
as a Dove prism.

Linear

HG modes

that its resultant rotation was tiny.

The analogous experiment for transfer-
ring orbital angular momentum to a sus-
pended cylindrical lens has proved too diffi-
cult. Instead, a number of groups have
examined angular-momentum transfer to
microscopic particles held by optical tweez-
ers.® Optical tweezers rely on the strong in-
tensity gradient at the tight focus of a laser
beam. At such a focus, any small, lightweight
dielectric particle experiences a gradient
force sufficient to attract it to the axis. So the
particle is held in place without mechanical
suspension.

In 1995, Halina Rubinsztein-Dunlop and
coworkers at the University of Queensland in .
Brisbane, Australia, used an unpolarized, he-
lically phased laser beam to impart orbital
angular momentum to a small ceramic parti-
cle held by optical tweezers.® In 1998, the
Brisbane group repeated the experiment,!® this time im-
parting spin angular momentum from a polarized beam to
a birefringent particle—a microscopic encore to Beth’s
1936 experiment.

The previous year, two of us (Padgett and Allen) per-
formed an experiment with Neil Simpson that demon-
strated the use of a circularly polarized and helically
phased beam as an optical wrench (in Britain we call it an
optical spanner).!! We showed, for € =1, that when the spin
and orbital angular-momentum components of the beam
had the same sense, they combined to induce a rapid ro-
tation of a small transparent particle. But when they were
of opposite sense, summing to zero angular momentum,
the particle did not rotate. This later experiment demon-
strated that the orbital angular momentum associated
with £=1 is mechanically equivalent to the angular mo-
mentum 7% associated with photon spin.

Although spin and orbital angular momentum are
equivalent in many ways, they have, in general, different
interaction properties. Because the orbital angular mo-
mentum of a light beam arises from the inclination of its
phase fronts, its interactions with particles away from the
axis are most easily understood in terms of the azimuthal
component of the beam’s linear momentum.

At the microscopic level, such interactions have been
observed with polarized helical beams acting also as opti-
cal tweezers (see figure 4). In several experiments, a small
transparent particle was confined away from the axis in
the beam’s annular ring of light.!? The particle’s tangen-
tial recoil due to the helical phase fronts caused it to orbit
around the beam axis. At the same time, the beam’s spin
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angular momentum caused the particle to rotate on its
own axis.

At the level of individual atoms, things are somewhat
different. Spin angular momentum per photon is a con-
stant at every position within the beam. For example, a
Zeeman transition can be excited by circularly polarized
light of the appropriate frequency anywhere an atom finds
itself within the beam’s cross section. By contrast, orbital
angular momentum is not transferred in the same way to
atoms positioned at different radial distance from the
beam axis. It is the Poynting vector’s tangential compo-
nent that makes the atom orbit the beam axis.

The detailed behavior of the atom is modified by fre-
quency shifts, relaxation times, and the atom’s degree of
excitation. In 1994, such effects were analytically exam-
ined for atoms in LG beams by Allen, Mohamed Babiker,
and coworkers.!! Their calculation showed that, in addi-
tion to the torque around the axis, the atom experiences a
shift in transition frequency. Both effects are proportional
to the beam’s orbital angular momentum.

Spin—orbit coupling of electrons determines much of
the atom’s energy-level structure. In an attempt to see if
such a coupling can also exist for photons, Allen and com-
pany have shown that a light beam exerts a dissipative az-
imuthal force on atoms proportional to the product of the
beam’s spin and orbital angular momentum.!® That force
is very small—of the same order as terms invariably neg-
lected in atom-trapping theory. But the prediction that this
tiny force should be reversed when the beam’s spin
changes handedness was a novel one.
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Figure 3. A hologram can produce a light beam with
helical phase fronts and associated orbital angular
momentum €% per photon. The appropriate holo-

gram can be calculated, or it can be generated from
the interference pattern between the desired beam
form and a plane wave. The resulting holographic

pattern resembles a diffraction grating, but it has an
£-pronged dislocation at the beam axis. (The one
shown here has three prongs.) When the hologram is
illuminated with a plane wave, the first-order dif-
fracted beams have the desired helical phase fronts.

Rotational frequency shifts

In 1979, Bruce Garetz and Stephen Arnold at the
Polytechnic Institute in New York observed that a
circularly polarized light beam is frequency shifted
if it is steadily rotated about its own axis.!* Classi-
cally, this shift is simply what one would observe if
a clock were laid face up at the center of a rotating
turntable. Looking down on the clock’s face, one
seems to see the second hand sweeping at the wrong
angular speed—the sum of the clockwork motion
and the turntable’s rotation.

Circularly polarized light behaves in just the
same way. The rotation of the beam on its axis
slightly speeds up or slows down the much faster optical
rotation of the electric field vector. The mechanical rota-
tion can be achieved with a rotating half-wave plate. This
rotational frequency shift is, in some sense, an angular
Doppler shift. But it is not the same as the Doppler shift
associated with rotating bodies viewed from the side,
which is simply a manifestation of the usual translational

First-order diffracted beams

Incident
plane Threefold dislocation
hologram

wave

Doppler effect in which the rotation of an object produces
a linear-velocity component along the line of sight. In fact,
the angular Doppler shift is maximal when the line of sight
is the rotation axis—precisely the direction in which the
linear Doppler shift vanishes.

In 1998, our Glasgow group managed to observe the
rotational frequency shift with a linearly polarized

millimeter-wave beam that carried orbital angular mo-
mentum; millimeter-wave beams are more forgiving than
shorter wavelengths of inevitable misalignments in such
experiments.’! The key to understanding the frequency
shift in a helical beam is to recognize that the time evolu-
tion of a helical phase front is indistinguishable from ro-
tation about the beam axis. So, a single rotation of the
beam advances or retards its phase by € cycles.

In a follow-up experiment later that year, with a beam
that had both circular polarization and a helical phase
front, we showed that spin and orbital angular momentum
combine to give a rotational frequency shift proportional
to the total angular momentum. That result is a general-
ization of the frequency shift predicted by Iwo and Zofia
Bialynicki-Birula at Warsaw University in 1997 for the
transition frequency of a rotating atom.*

Interaction with nonlinear crystals

The high power density achievable with focused laser
beams has made nonlinear optics a common phenomenon
in the optics laboratory. In much the same way that large
input voltages cause audio amplifiers to distort, yielding

Figure 4. Transferring angular momentum from light to matter
can make the matter rotate. When a circularly polarized laser
beam with helical phase fronts traps a micron-sized dielectric
particle (yellow ball) in an annular ring of light around the beam
axis, one can observe the transfer of both orbital and spin angu-
lar momentum.'? The trapping is a form of optical tweezing ac-
complished, without mechanical constraints, by the ring’s inten-
sity gradient. The orbital angular momentum transferred to the
particle makes it orbit around the beam axis (top). The spin an-
gular momentum, on the other hand, sets the particle spinning
on its own axis (bottom).
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Figure 5. Second-harmonic generation with helical
phase-front light beams in a nonlinear crystal con-
serves orbital angular momentum as well as linear

momentum and energy within the light field. The
two input beams are from the same source, and the
output frequency is double that of the input. The
process also doubles €4, the orbital angular mo-
mentum per photon. Nonlinear effects in a dielec-
tric crystal can also produce a reverse three-photon
interaction that results in frequency down-conver-
sion. A single high-energy photon becomes two
photons of lower energy. That phenomenon also
conserves energy, linear momentum, and orbital
angular momentum within the light field.

output that contains extraneous frequencies, intense light
beams distort the dielectric response of many optical crys-
tals. This distortion, or nonlinearity, causes the light emit-
ted by the crystal to include frequencies that were not in
the optical input.

The most efficient nonlinear processes involve inter-
action among three waves. One either combines two inci-
dent waves to form a third, in a process known as fre-
quency up-conversion, or one performs frequency
down-conversion by splitting a single incoming wave into
two. In both cases, conservation of energy at the photon
level dictates that the largest of the three frequencies is
the sum of the two lesser frequencies.

Conservation of momentum also plays a role. When
the interacting beams are plane waves, all the Poynting
vectors are collinear, and momentum conservation dictates
a relationship among the three refractive indices. The reg-
uisite balancing of refractive indices is called phase match-
ing. Remember that the Poynting vector in helically
phased beams describes a spiral trajectory around the
beam axis. One might think that this spiraling modifies
the phase-matching conditions; but that’s not the case.

Consider, for example, second-harmonic generation in
which a single beam, split in two, constitutes both inputs,
and the output beam is doubled in frequency. The orbital
angular momentum is also doubled (see figure 5). In the
photon picture, this means that two photons combine to
form one photon of twice the energy, twice the linear mo-
mentum, and twice the orbital angular momentum. Con-
trast this conservation of orbital angular momentum
within the light fields against what happens to the pho-
tons’ spin. There has to be a transfer of spin angular mo-
mentum to the frequency-doubling crystal, because a sin-
gle photon cannot have a spin angular momentum of 27.

For down-conversion, energy conservation allows the
initial beam to be split into two input beams with any com-
bination of frequencies, so long as their sum equals the fre-
quency of the initial beam. The phase-matching condition is
what controls that frequency-splitting ratio. But there is
nothing like the phase-matching restriction to constrain the
division of the initial orbital angular momentum between
the two input beams. In principle, any combination of or-
bital angular momenta that conserves the initial beam’s or-
bital angular momentum is allowed. In fact, each of the split
beams is in a mixture of orbital angular momentum states
with a well-defined mean value. But as we shall see, the pe-
culiarly quantum mechanical relationship between the
beams can only be observed at the single-photon level.

Any number of fields can interact nonlinearly within
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the constraints of energy and momentum conservation.
But efficiency imposes practical limits. Take, for example,
four-wave mixing in which three light waves combine to
produce a fourth. One such process is phase conjugation,
which occurs when a nonlinear material is optically ex-
cited by two pump beams so that an additional signal beam
creates a beam traveling in the opposite direction with op-
posite phase. It’s a kind of mirror.

In a recent phase-conjugation experiment at Pernam-
buco Federal University in Recife, Brazil, Sergio Barreiro
and Jose Wellington Tabosa used cold cesium atoms as the
nonlinear material.’® They reported that if the signal beam
carries orbital angular momentum, its phase information
and angular momentum is transferred first to the atoms
and then, after a deexcitation time, to the “reflected” beam.
Such a mechanism might one day be exploited for memory
storage in multidimensional information processing.

Quantum effects

The first truly quantum-mechanical experiment using
light beams with orbital angular momentum was reported
in 2001 by Anton Zeilinger’s group at the University of Vi-
enna.'” In a down-conversion experiment, the group
demonstrated that the conservation of orbital angular mo-
mentum applied individually to each pair of emitted pho-
tons. This demonstration extended to orbital angular mo-
mentum the analogous tests of quantum mechanics
carried out by Alain Aspect’s group in the early 1980s. They
had shown that the spin angular momentum of down-
converted photon pairs was an entangled quantum state.
The spin of a photon is defined by two states. But, as we've
seen, the number of possible orbital angular-momentum
states is unlimited. That difference presents the prospect
of a deeper examination of quantum entanglement be-
tween photon states than has previously been possible.
The degree of a beam’s polarization is readily meas-
ured with a polarizer. But orbital angular momentum, be-
cause of the arbitrarily large number of quantum states,
is more difficult to quantify. One can check for a specific
value of ¢ by means of the same holograms one uses to cre-
ate helical phase fronts. But that method doesn’t permit the
€ of individual photons to be measured unambiguously.
Last year, however, our group devised a method for
using interferometers to sort single photons into their dif-
ferent orbital angular-momentum states.! Our interfer-
ometer had a beam rotator in one arm. That introduced an
{-dependent phase shift that allowed the photons to be
sorted into states of odd and even €. Subsequent interfer-
ometer stages then permitted further sorting into specific
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Figure 6. Heisenberg’s uncertainty principle is manifested in
a recent experiment at Glasgow University with a light beam
that initially carries no orbital angular momentum. The range
A¢ of azimuthal angular positions for a photon in a cross
section of the beam is defined by a sector aperture. Up-
stream of the aperture, the beam is in an € = 0 eigenstate of
orbital angular momentum (upper panel). But the uncertainty
principle dictates that the restriction in ¢ introduce a spread
(lower panel) in the orbital angular momentum L = €% per
photon. For narrow apertures, the relationship is A¢pAL>7/2.

orbital angular-momentum states.

An essential aspect of the quantum world is the fun-
damental limit that Heisenberg’s uncertainty principle
sets on the accuracy with which one can simultaneously
know the values of a pair of conjugate variables. Angular
position and orbital angular momentum are such a pair.
In work not yet published, Steve Barnett and our group
have recently demonstrated that this aspect of the Heisen-
berg principle can actually introduce orbital angular mo-
mentum—albeit with an expectation value of zero—into a
light beam that starts out with none (see figure 6).

The experiment defines the angular position of a pho-
ton in the beam’s cross section by making it pass through
a V-shaped sector aperture whose apex is coincident with
the beam axis. We have shown that, when a beam in an
eigenstate of orbital angular momentum L = €% per pho-
ton passes through such an aperture, it acquires a distri-
bution of orbital angular-momentum states. For narrow
apertures, we showed that the product of aperture width,
A¢, and angular momentum spread, AL, is bounded by #/2,
as quantum mechanics tells us it must be.

The exploration and exploitation of light with orbital
angular momentum are still in early days. There’s much
to be learned about the interaction of such light with
atoms. Exciting applications with rotating optical micro-
machines are in prospect. For quantum communication
and information processing, the expansion of the Hilbert
space of angular-momentum states offers opportunities for
new approaches to encryption and data storage.

Martin Harwit has proposed that the orbital angular
momentum of light from celestial sources might provide a
new window on the cosmos.! For example, the observation
of orbital angular momentum in light scattered by black
holes could be very instructive. And we could search for
signals from extraterrestrials who might be availing them-
selves of the high information density made possible by or-
bital angular momentum. At the birth of modern astron-
omy, Kepler studied the role of light’s linear momentum.
Perhaps astronomers will soon find something equally
valuable in its orbital angular momentum.
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