- ▶NSF's annual budget request to Congress for major facilities should be based on the road map. The budget request should "include the proposed yearly expenditures over the next 5 years for committed projects and for projects that will start in that period. The request should also include a rank ordering of the proposed new starts."
- ▶Once a project is funded, there should be "disciplined periodic independent review... by a committee that includes internal and external engineering and construction experts."
- ▶To ensure that potential international and interagency collaborations are considered, the Office of Science and Technology Policy "should have a substantial early role in coordinating

road maps across agencies and with other countries."

Brinkman said that OSTP Director John Marburger consulted closely with the committee in developing the report. The committee also looked at the US Department of Energy's process for developing its 20-year road map for large science projects (see PHYSICS TODAY, January 2004, page 23).

An NSF spokesman said the foundation was reviewing the report and was not ready to comment. Brinkman said NSF Director Rita Colwell and other NSF officials had been briefed by the committee and "they rightfully have to sit and look at this. There are some tough things they have to do."

Jim Dawson

Carty Named to Canada's New High-Level Science Post

Carty

The day he was sworn in as Canada's prime minister last December, Paul Martin announced the creation of a national science adviser post. Stepping into the new shoes on 1 April is Arthur Carty, a synthetic chemist and president of the National Research Council (NRC) of Canada.

News of the resurrection of a highlevel science post is being heartily welcomed by Canada's science com-

munity. Three decades ago, the country had a science adviser to the cabinet—not, as now, to the prime minister. Martin also named Joe Fontana, a long-time member of parliament, to be parliamentary secretary for science and small business, another new position.

The moves are seen as evidence of the government's commitment to science and technology and as

a means to improve both the decision-making process in S&T and the communication between the science community and policymakers—and, by extension, the public. A couple of years ago, when Martin was finance minister, says Béla Joós, president of the Canadian Association of Physicists, "he was the most sympathetic person in government to arguments that the prosperity of modern nations depends on high technology. Therefore, having him now as prime minister is the best thing that could happen to the science community."

Having a national science adviser "is an excellent development," adds Pekka Sinervo, a high-energy physicist and dean of arts and sciences at the University of Toronto. "[Carty] is a very well-respected administrator, an excellent bench scientist in his own right, and understands the Ottawa scene very well. People are cautiously optimistic. It will depend on how Carty is on influencing and steering policy and his relationship with the prime minister. These are unknowns."

A UK native, Carty went to Canada in the 1960s. He served on the

faculty of the University of Waterloo for 25 years, including a stint as dean of research, before becoming NRC chief a decade ago. He continues to maintain an active research group.

In his new role, Carty will counsel the prime minister on S&T issues. A key thrust of the government is to commercialize research advances—and to climb from 14th to 5th place

worldwide in per capita R&D spending by the end of the decade (see PHYSICS TODAY, May 2003, page 25). Canada has increased R&D funding significantly over the past few years, says Carty. "That has to be continued and, if possible, enhanced." Reaping the benefits of investments in fundamental research, he adds, "is not going to happen automatically if you ignore the innovation end."

Setting funding priorities for science, defining and securing Canada's role in the international science arena, and establishing mechanisms for dealing with big science are also on Carty's agenda. "We haven't got a transparent process for evaluating big science in the context of comparing

both among large projects and with big versus small," says Carty. More generally, he adds, "I will always be taking the pulse of the science community in universities and colleges, industry, and the government R&D community to find out their needs and aspirations."

Toni Feder

Flatten Succeeds Lerch as APS International Affairs Director

On 2 February, Amy Flatten became head of international affairs at the American Physical Society. She took the torch from Irving Lerch, who stepped down last December, 11 years after founding the program.

After earning her PhD in 1993 from Georgia Tech for research on polarization-preserving optic fibers as

acoustic sensors, Flatten became a high-tech consultant. In one job, she led a team that designed a prototype of a ballistic missile alert communications system. In another, she looked at the impact of telecommunications systems on business. "I found that I enjoyed the bigger questions more than I enjoyed the detailed questions of the lab," she says. At the same time, she adds, "I missed the international picture." So she moved first to the US Department of Commerce, where she worked with industry and government on international telecommunications policy development, and then to the White House Office of Science and Technology Policy (OSTP), where she spent five years before joining APS. She plans to continue teaching on the side at Johns Hopkins University, as she has done for nearly a decade.

At OSTP, Flatten promoted international collaboration in S&T. Among other things, as the office's lead on US-Russian relations, she worked with government representatives to smooth the way for scientific collaborations on peaceful issues between former Russian nuclear scientists and US researchers. That culminated last