New Algorithm Speeds Up Computer

Simulations of Complex Fluids

Previously intractable systems are now within the modeler’s grasp,
thanks to an approach adapted from the study of lattice spin systems.

In a colloidal dispersion, particles
much bigger than atoms are spread
more or less uniformly amid a molec-
ular fluid. Paint is a colloidal disper-
sion; so are ice cream, smog, and
shampoo.

Less quotidian are the myriad new
colloids being developed for drug de-
livery, photonics, and other high-tech
applications. Materials scientists like
the colloid concept because it com-
bines functional nanoparticles, whose
aggregate surface is huge, with a sup-
porting medium, whose properties
can be tailored and transformed.

Predicting and optimizing a col-
loid’s properties requires a physical
model. But the colloid’s mix of parti-
cle sizes, along with the range and va-
riety of forces present, frustrates the
modeler. Even though one can write
down exact equations for the inter-
particle forces, obtaining a solution
for the bulk substance is impossible
without severe approximations. Nu-
merical approaches founder under the
colossal computational load.

Now, Erik Luijten of the University
of Illinois at Urbana-Champaign and
Jiwen Liu, his graduate student, have
devised a new simulation algorithm.!
Thanks to its exquisite efficiency,
Luijten and Liu’s algorithm can tackle
fluid systems, like the colloids shown
in figure 1, that were once all but im-
possible to simulate.

Movies and snapshots
To understand why simulating cer-
tain fluid systems is so difficult, con-
sider what might seem the most obvi-
ous approach. First, construct a trial
configuration and note the initial po-
sitions and velocities of all the con-
stituent particles. Calculate the forces
acting on each particle, apply New-
ton’s second law of motion, and then
determine where the particles end up
after an incremental step in time. Re-
peat as necessary.

This approach, known as molecu-
lar dynamics (MD), yields what can be
thought of as a movie of the system—
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that is, a time-ordered sequence of
stills, each of which captures an in-
stantaneous state of the system and
which is connected to its neighbors by
physical dynamics.

Even with a supercomputer, MD
can track a typical condensed matter
system for little more than a millisec-
ond. Although that span may suffice
for a fluid of identical particles, it’s too
short for colloids because the large
suspended particles barely move on
that timescale. And if one tried to
speed up the simulation by taking
larger time steps, the crucial behavior
of the fluid particles would be missed.

Half a century ago, when comput-
ers were 10 times more feeble than
their modern counterparts, physicists
developed the probabilistic ap-
proaches known collectively as Monte
Carlo. Of these, the variant published
in 1953 by Nicholas Metropolis and
his coworkers has proven to be the
most influential and popular.?

The Metropolis algorithm doesn’t
attempt to track every particle. Rather,
the simulation proceeds by randomly
picking a single particle from a trial
configuration and moving it. If the
move ends up lowering the system’s en-
ergy, the new configuration is accepted.
If the move raises the energy, the new
configuration is accepted with a prob-
ability of exp(—AE/ET).

Moving only one particle at a time
is unphysical, but the Metropolis ac-
ceptance criterion ensures that the set
of accepted configurations converges
to thermodynamic equilibrium. The
algorithm also ensures that the ac-
cepted configurations represent the
most frequently occupied states,
rather than a random sampling of all

Figure 1. These colloidal suspensions
consist of silica microspheres in dilute
nitric acid. Because of Van der Waals
attractions, the microspheres tend to
clump together, as shown in the top
panel. Adding charged nanospheres, as
shown in the bottom panel, prevents
the clumping. (Adapted from ref. 7.)

possible states. Without that key prop-
erty, the algorithm would be useless.

So, if MD is like a movie, the Me-
tropolis algorithm is like a sparse set
of shuffled snapshots. If you simulated
a cocktail party with the Metropolis al-
gorithm, you wouldn’t see dynamical
events, such as guests arriving and de-
parting, or rare events, such as a
waiter refilling a punchbowl. But,
taken together, the Metropolis snap-
shots would fairly represent the party
in full swing. From them, you could de-
duce whether, on average, people had
enjoyed themselves.

The Metropolis algorithm is one of
the most widely used and crops up in
such diverse fields as banking and as-
trophysics. But like MD, it’s stumped
by colloidal systems. The difficulty
lies in the big particles, which can’t be
lifted and repositioned without dis-
lodging smaller particles at high en-
ergetic cost.
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Before Luijten and Liu’s algorithm
cracked the fluid problem, other work-
ers had shown how to make the Me-
tropolis algorithm work in another
difficult arena: spin lattices close to
critical points.

A digression on spin lattices

The Ising model of ferromagnetism is
among the most studied systems in
statistical physics. Each site in a no-
tional lattice is occupied by a spin that
can point up or down, with a tendency
to align both with its neighbors and
with an external magnetic field.

At high temperatures, the spins
have more than enough energy to
break out of alignment, and each spin
flips between the two states with high
probability. At low temperatures, the
spins still flip, albeit less readily, but
alignment prevails and only individ-
ual, sporadic flips occur.

Despite its simplicity, the Ising
model can’t be solved analytically in
three dimensions. But it’s almost per-
fectly framed for the Metropolis algo-
rithm—except, that is, in the vicinity
of a critical point.

When the temperature of an Ising
system drops toward the Curie tem-
perature, large-scale fluctuations
emerge. Flipping spins one at a time
a la Metropolis fails to follow the fluc-
tuations. The closer the system ap-
proaches this critical point, the more
moves are needed to reach a new, un-
correlated state. Like a car vainly
spinning its wheels in a muddy ditch,
the simulation stops advancing.

In 1987, Robert Swendsen and Jian-
Sheng Wang of Carnegie Mellon Uni-
versity found a way to dispose of this
so-called critical slowing.? Rather than
flip one spin per move, they flip several
at once and in such a way that the en-
tire move is guaranteed acceptance.

To identify which spins to flip,
Swendsen and Wang exploited a
mathematical mapping devised in the
late 1960s by Piet Kasteleyn and his
graduate student, Cees Fortuin.? In
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Figure 2. Erik Luijten and Jiwen Liu’s algorithm takes an initial trial state (a)
through a set of reflections (b) to a new state (c). (Adapted from ref. 1.)

that mapping, spin—spin interactions
are recast as bonds whose strength
depends on the degree of alignment.
Temperature and energy also con-
tribute to bond strength.

Swendsen and Wang realized the
bound spins form clusters that could
be flipped en bloc. Their algorithm can
sail through a critical point without
stopping. Its clusters even corre-
spond, more or less, to the large-scale
fluctuations that form and percolate
around a critical point.

Geometric clusters

The Swendsen—Wang algorithm, and
its refinement by Ulli Wolff two years
later,? revolutionized the study of lat-
tice spin systems. But when modelers
sought to adapt the cluster approach to
fluids, they hit a problem. The Swend-
sen—Wang algorithm succeeds, in part,
because of an intrinsic symmetry: Flip-
ping a spin twice recovers the original
state. That convenient restoration
doesn’t happen when a fluid particle
undergoes two identical displacements.

In 1995, Werner Krauth and
Christophe Dress of the Ecole Nor-
male Supérieure in Paris realized
that a messy, disordered fluid does
have a symmetry of sorts. Reflecting
a particle twice about a point returns
the particle to its starting point.

Of course, a reflection is hardly in-
dependent of its original state. How-
ever, as Krauth and Dress showed, re-
flection can help identify clusters of
particles that can be moved without
incurring rejection.

To grasp the basic idea, consider a
two-dimensional system in which all
the particles have the same size. Start
with a trial configuration A. Pick a
point within A at random and rotate
A about it by 180° to produce a new
configuration B (in 2D, rotating the
configuration by 180° is equivalent to

reflecting individual particles). Su-
perpose A and B to make C.

Now, examine C. Any particle that
has an overlap in C can be moved from
its position in A to the position it has
in B without bumping into another
particle. Provided the interparticle
forces are sufficiently short-ranged,
such a move won’t incur a rejection-
triggering increase in energy. The
group of translated particles makes
up the cluster, and the resulting new
configuration is a mix of those parti-
cles that moved through a 180° rota-
tion and those that stayed put.®

Krauth and his coworkers success-
fully used their geometric cluster al-
gorithm to simulate certain idealized
cases, such as the phase separation of
big and small hard spheres. But the
particle interactions in colloids and
other fluid systems are long-ranged.
To adapt their algorithm to realistic
systems, Krauth and company added
an extra round of acceptance tests.
Applying those tests led to too many
rejections.

General geometric cluster

Luijten and Liu provided the missing
ingredient. Like Krauth and Dress,
they reflect particles about a ran-
domly selected pivot. But, like Swend-
sen and Wang, they do so without in-
curring costly rejections.

Figure 2 illustrates how the algo-
rithm works. First, the algorithm gen-
erates a random pivot (the red dot in
panel b) and picks a particle (colored
yellow and labeled 1) for a point re-
flection to a new position (colored
blue). Any particles that fall under the
influence of particle 1, either in its old
position or its new position, become
candidates to join the cluster.

Particle 2, being close to particle 1’s
new position, is the first candidate. If,
by moving, particle 2 can lower its en-
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Energy Autocorrelation Time and Efficiency

he energy autocorrelation time 7 measures the time a computer takes to calcu-

late a transition from one state to another whose energy is completely uncorre-
lated. In a Metropolis simulation, reaching an uncorrelated state always involves
several computational steps because successive configurations, being the result of
moving a fraction of the particles, tend to be similar. Going from one configuration
to the next can also take several steps, especially when trial moves tend to be re-
jected. Thus, 7 provides a measure of an algorithm'’s efficiency.

The figure shows how
10° efficiently Erik Luijten and
Metropolis . Jiwen Liu’s generalized
geometric cluster algo-
rithm and the Metropolis
algorithm tackle the same
test: determining equilib-
rium properties of a fluid
mixture of two differently
sized particles. The big
particles repel each other
with a Yukawa-style force,
whereas the small parti-
cles interact with each
other and with the big par-
ticles like hard spheres.

Both algorithms per-
form equally well when the big particles are no more than twice the size of the
small particles. In that case, the algorithms each consume about a millisecond of
CPU time per particle move between uncorrelated states. Given that one typically
needs about 10 000 such states to characterize thermodynamic equilibrium, both

Geometric cluster
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algorithms are fast.

But look what happens when the size ratio approaches 8. The Metropolis algo-
rithm is unable to reach equilibrium, unlike the geometric cluster algorithm, which
is more efficient for all size ratios. (Adapted from ref. 1.)

ergy with respect to particle 1 by AE,
its probability of moving is 1 —
exp(—AE/kT). That happens to be the
case here, so particle 2 undergoes a
point reflection about the pivot. If, on
the other hand, the move entailed an
increase in the pair’s energy, the move
would be discarded outright.

Particle 3 is out of range of particle
I’'s new or old positions, so the algo-
rithm evaluates particle 3 with respect
to particle 2. Because the interparticle
force happens to be attractive in this ex-
ample, particle 3 joins the cluster with
high probability, as in figure 2.

Particles 4, 5, and 6 are out of
range of the first three particles in
their old and new positions, so the
cluster stops growing, the algorithm
picks a new pivot, and the cluster-
building process starts afresh.

Because of symmetry, the interact-
ing particles that form a cluster retain
their original separations and ener-
gies when they move. But, as figure 2
shows, the cluster’s particles change
position relative to the particles that
don’t belong to the cluster. After sev-
eral clusters have moved, the system
reaches a configuration that no longer
resembles its starting point.

The speed with which an algorithm
moves from one uncorrelated state to
the next is a key measure of its per-
formance. As the box above shows, cer-
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tain two-particle mixtures that were
impossible to simulate with the Me-
tropolis algorithm are now tractable
with Luijten and Liu’s algorithm.

How general is the algorithm? If
the colloidal particles are packed too
tightly, the algorithm will find only
one cluster—the entire system—and
won’t be able to reach an uncorrelated
state. Luijten estimates the limit is
reached when the colloidal particles
occupy a quarter of the total volume.

Further limits, applications, and
extensions will most likely emerge
when other modelers implement the
algorithm for themselves. So far, their
reaction has been favorable. “It’s bril-
liant,” said Swendsen. Krauth was
even more effusive: “When I read
Erik’s paper, I freaked out!”

Charles Day
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