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ing regime of low-temperature super-
conductors. A study of strongly inter-
acting atom pairs might offer useful
clues to the high-temperature super-
conductors: The interaction strength
of atom pairs reported by the Col-
orado group translates to the cou-
pling one would expect between elec-

tron pairs in a room-temperature 
superconductor. 

Barbara Goss Levi
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Acoustics Experiment Shows Why It’s So Hard to 
Make Out the Heroine’s Words at the Opera 

Afrustrated listener might well de-
fine grand opera as musical the-

ater where you have a hard time mak-
ing out the words even when they’re
being sung in your own language.
Conceding the point, many opera
houses nowadays always flash sur-
titles above the proscenium. Compre-
hension is particularly difficult in the
higher reaches of the soprano register.
Hector Berlioz long ago warned com-
posers not to put crucial words in the
soprano’s mouth at high notes.

A recent study at the University of
New South Wales in Sydney, Aus-
tralia, lays most of the blame on an in-
escapable tradeoff dictated by the
physical acoustics of vowel differenti-
ation and singing very high notes.
Acoustical physicists John Smith and
Joe Wolfe, working with physics
undergraduate Elodie Joliveau, have
carried out an experiment that
demonstrates why different vowel
sounds are almost impossible to dis-
tinguish when sopranos are singing in
the highest octave of their range.1

The experimental subjects were
eight professional operatic sopranos.
Joliveau is herself a soprano, Wolfe is
a composer and woodwind player, and
Smith plays the double bass. The ex-
perimenters used equipment devel-
oped by Smith and Wolfe for the
analysis of acoustic resonances in mu-
sical instruments and in the vocal
tract during ordinary speech. The
equipment is, in fact, designed to help
adults master the sounds, especially
the vowels, of a new language. It’s also

being applied to the correction of
speech pathologies. 

Vocal tract resonances
In ordinary speech or singing, the fun-
damental pitch frequency f0 is deter-
mined by the tension applied to the
vocal cords. (The alternative term
“vocal folds” is more anatomically pre-
cise.) The output at f0 is accompanied
by a harmonic series of overtones nf0.
If there were no resonant effects in
the vocal tract, which extends from
the cords to the lips, the amplitudes of
successive harmonics would fall off by
about 12 decibels per octave. But the
vocal tract does present a sequence of
resonant frequencies Ri. Conse-
quently, any harmonic nf0 from the
vocal cords that happens to lie close to
one of the Ri is enhanced.

To make the various vowel sounds,
a speaker or singer must change these
vocal-tract resonances by altering the
configuration of tongue, jaw, and lips.
The distinction between different
vowel sounds in Western languages is
determined almost entirely by R1 and
R2, the two lowest resonances. That is,
vowels are created by the first few
broad peaks on the amplitude envelope
imposed on the overtone spectrum by
vocal-tract resonances.

For the vowel sound in “hood,” as
pronounced by a male speaker of
“standard” Australian, R1 � 400 Hz
and R2 � 1000 Hz. By con-
trast, to produce the vowel
in “had,” he must raise R1
and R2 to about 600 and

1400 Hz, respectively, by opening his
mouth wider and pulling the tongue
back.

For women, the characteristic res-
onance frequencies for a given vowel
sound are roughly 10% higher. But
for both sexes, the pitch frequency 
f0 in speech and singing is generally
well below R1 for any ordinary vowel
sound—except when sopranos are
singing really high notes. And that’s
when vowel distinctions become 
problematic.

Striving to be heard in the last row
of a large opera house, often in com-
petition with a full orchestra, a so-
prano needs all the help her vocal-
tract resonances can provide. But R1
is useless as an amplifier when f0 ex-
ceeds it. The highest octave of the so-
prano range typically extends from C5
(523 Hz) to C6 (1047 Hz). That octave
also happens to be the beginning of
the frequency range in which human
hearing is most sensitive.

In the 1970s, Johan Sundberg
(Royal Institute of Technology, Stock-
holm), a pioneer in the analysis of
singing acoustics, presented evidence
that the tricks sopranos are tradition-
ally taught for maintaining volume at
high notes (“open your mouth very
wide and smile”) actually serve to raise
R1 toward f0. But, with the technology
then at his disposal, Sundberg could
not confirm his conjecture directly.2 For
any one note, the singer’s frequency
spectrum could sample the resonant
structure of the vocal tract only at f0
and its overtones—that is, at discrete
frequencies hundreds of hertz apart.

Vocal-tract resonances enhance the output of the vocal cords. They also
create the distinctions between different vowels sounds. For sopranos
singing high notes, the two functions come into conflict.

Figure 1. Simultaneous measurement of the harmonic spectrum of a
soprano singing and of the resonant effect of her vocal tract on the

flat, broadband frequency spectrum from a synthesizer just outside her
mouth. The soprano sustained the note A4 (fundamental frequency
f0 = 440 Hz) with the vowel sound in “hard.” The overtones are la-

beled nf0 and the vocal-tract resonances are marked Ri. The combined
acoustic pressure spectrum is normalized to the spectrum recorded for

the synthesizer alone, with the singer silent and her mouth closed.
(Adapted from ref. 1.)
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The Sydney experiment
By contrast, the Sydney group’s new
technique probes the vocal tract al-
most continuously over the frequency
range 0.2–4.5 kHz. Adjacent to a mi-
crophone touching the subject singer’s
lower lip is an acoustical current
source—the output horn of an elec-
tronic sound synthesizer that is cali-
brated to present the microphone
with a flat broadband frequency spec-
trum when the singer is silent with
her mouth closed.

In the Sydney experiment, the sub-
ject sang a sustained note with a
given vowel sound while the synthe-
sizer was on. Thus the frequency spec-
trum recorded by the microphone (see
figure 1) combined the narrow spikes
of the singer’s fundamental pitch fre-
quency and its overtones with the
much broader, but still well-defined,
peaks that exhibit the modification of
the synthesizer output by the reso-
nances in that particular vocal-tract
configuration. The spectrum in fig-
ure 1 was produced by a soprano sus-
taining the note A4 (440 Hz) for four
seconds with the vowel sound in
“hard.” The observed R1 in that case,
about 650 Hz, was comfortably above
the 440-Hz fundamental. And it was
essentially the same as the R1 for that
vowel sound in ordinary speech.

But what happens to the first
vocal-tract resonance as the soprano
goes up the scale to higher notes? Fig-
ure 2 plots the Sydney experiment’s
measured change of R1 with increas-
ing f0 for four different vowel sounds.
At low pitch frequency, the R1 values
are well separated and roughly inde-
pendent of f0. They are about the same

as they are in speech.
If these plateaus

were to continue to
higher pitch frequen-
cies, f0 would eventu-
ally surpass R1 and
thus render the first,
and most important,
resonance acoustically
useless. But as f0 ap-
proaches the diagonal
that delineates f0 = R1,
we see that R1 begins
to rise, as Sundberg

had argued, eventually becoming
equal to f0 and thus strongly amplify-
ing the fundamental note produced by
the vocal cords. This “tuning” of R1
also serves the important function of
minimizing unintended variation of
loudness and timber with pitch.

Morphologically, what’s happening
is that the trained singer is progres-
sively flaring the front end of her
vocal tract by lowering her jaw and
pulling back the corners of her mouth
in an exaggerated smile (see figure 3).
The first resonance of an unflared
cylinder is at the frequency for which
the cylinder’s length is 1/4 of the
wavelength of a standing acoustic
wave. The effective length of an
adult’s vocal tract is typically
15–20 cm. But just as in brass instru-
ments, the greater the flaring for a
given total length, the higher is R1. 

Understanding the words 
The asymptotic convergence of f0 and
R1 in figure 2 continues all the way up
to C6, except for the vowel sounds in
“hoard” and especially in “who’d.”
Wolfe explains: “For those vowels you
round your lips, and in that facial
mode it’s uncomfortable, if not
anatomically impossible, to raise R1
above a kilohertz.” Composers tend to
avoid such vowel sounds at the high-

est notes. A notable exception was
Beethoven, who became notoriously
indifferent to singers’ limitations after
he went deaf. In the choral movement
of his ninth symphony, the soprano
soloist has to sing her highest note
(B5 = 989 Hz) on the umlauted U in
flügel (wing), an even more daunting
vowel sound than that in “who’d.”

As the first vocal-tract resonances
converge with increasing f0, it becomes
more and more difficult to distinguish
words. If the plot depends crucially on
whether the heroine is singing “bird,”
“barred,” or “bored” at A5 (880 Hz),
you’d better keep your eyes on the sur-
titles rather than the dagger.

What if a soprano were willing to
forgo the benefits of raising R1 for high
notes? That would only partially solve
the comprehensibility problem. Even
for constant, well-separated R1 fre-
quencies, vowel distinction becomes
increasingly harder with rising pitch.
That’s because f0 is the spacing be-
tween overtones. The higher the note,
therefore, the more sparsely does the
sound produced by the vocal cords
sample the resonant spectrum of the
larynx and mouth.

On the Sydney music-acoustics
group’s Web site,3 one can listen to the
gradual disappearance of all vowel
distinction as a soprano ascends the
scale from C4 to C6. The site also
poses a “soprano challenge.” Any clas-

Figure 2. Measured rise of the first vocal-tract resonant frequency
R1 with increasing pitch frequency f0 for various sustained vowel
sounds sung by classically trained sopranos. For low notes, R1 is
roughly constant at its characteristic value for the particular vowel
sound in ordinary speech. To the right of the diagonal, f0 would ex-
ceed R1, rendering the first resonance useless. Therefore, as the ex-
periment shows, sopranos singing high notes tend to tune R1 to
keep pace with f0. That improves volume and timbre, but at the
cost of losing the distinction between different vowel sounds.
(Adapted from ref. 1.)
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Figure 3. Soprano Kirsten Butchatsky
was a subject in the Sydney group’s ex-

periment.1 By lowering the jaw and
pulling back the corners of the mouth

for very high notes, a classically
trained soprano raises the lowest reso-

nant frequency of her vocal tract.
(Photo courtesy of Joe Wolfe.)
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sically trained soprano who believes
she can maintain clear vowel distinc-
tions at the top of the scale is invited
to contact the group. “If we find some-
one who can indeed defy what we
think is a fundamental physical limi-

tation,” says Wolfe, “that would be the
basis for a very interesting study.”

Bertram Schwarzschild

References
1. E. Joliveau, J. Smith, J. Wolfe, Nature

427, 116 (2004).
2. J. Sundberg, The Science of the Singing

Voice, Northern Illinois U. Press,
Dekalb, IL (1987).

3. http://phys.unsw.edu.au/~jw/soprane.
html.

New Algorithm Speeds Up Computer 
Simulations of Complex Fluids

In a colloidal dispersion, particles
much bigger than atoms are spread

more or less uniformly amid a molec-
ular fluid. Paint is a colloidal disper-
sion; so are ice cream, smog, and
shampoo.

Less quotidian are the myriad new
colloids being developed for drug de-
livery, photonics, and other high-tech
applications. Materials scientists like
the colloid concept because it com-
bines functional nanoparticles, whose
aggregate surface is huge, with a sup-
porting medium, whose properties
can be tailored and transformed.

Predicting and optimizing a col-
loid’s properties requires a physical
model. But the colloid’s mix of parti-
cle sizes, along with the range and va-
riety of forces present, frustrates the
modeler. Even though one can write
down exact equations for the inter-
particle forces, obtaining a solution
for the bulk substance is impossible
without severe approximations. Nu-
merical approaches founder under the
colossal computational load.

Now, Erik Luijten of the University
of Illinois at Urbana-Champaign and
Jiwen Liu, his graduate student, have
devised a new simulation algorithm.1

Thanks to its exquisite efficiency,
Luijten and Liu’s algorithm can tackle
fluid systems, like the colloids shown
in figure 1, that were once all but im-
possible to simulate.

Movies and snapshots
To understand why simulating cer-
tain fluid systems is so difficult, con-
sider what might seem the most obvi-
ous approach. First, construct a trial
configuration and note the initial po-
sitions and velocities of all the con-
stituent particles. Calculate the forces
acting on each particle, apply New-
ton’s second law of motion, and then
determine where the particles end up
after an incremental step in time. Re-
peat as necessary.

This approach, known as molecu-
lar dynamics (MD), yields what can be
thought of as a movie of the system—

that is, a time-ordered sequence of
stills, each of which captures an in-
stantaneous state of the system and
which is connected to its neighbors by
physical dynamics.

Even with a supercomputer, MD
can track a typical condensed matter
system for little more than a millisec-
ond. Although that span may suffice
for a fluid of identical particles, it’s too
short for colloids because the large
suspended particles barely move on
that timescale. And if one tried to
speed up the simulation by taking
larger time steps, the crucial behavior
of the fluid particles would be missed.

Half a century ago, when comput-
ers were 1010 times more feeble than
their modern counterparts, physicists
developed the probabilistic ap-
proaches known collectively as Monte
Carlo. Of these, the variant published
in 1953 by Nicholas Metropolis and
his coworkers has proven to be the
most influential and popular.2

The Metropolis algorithm doesn’t
attempt to track every particle. Rather,
the simulation proceeds by randomly
picking a single particle from a trial
configuration and moving it. If the
move ends up lowering the system’s en-
ergy, the new configuration is accepted.
If the move raises the energy, the new
configuration is accepted with a prob-
ability of exp(⊗DE/kT).

Moving only one particle at a time
is unphysical, but the Metropolis ac-
ceptance criterion ensures that the set
of accepted configurations converges
to thermodynamic equilibrium. The
algorithm also ensures that the ac-
cepted configurations represent the
most frequently occupied states,
rather than a random sampling of all

possible states. Without that key prop-
erty, the algorithm would be useless.

So, if MD is like a movie, the Me-
tropolis algorithm is like a sparse set
of shuffled snapshots. If you simulated
a cocktail party with the Metropolis al-
gorithm, you wouldn’t see dynamical
events, such as guests arriving and de-
parting, or rare events, such as a
waiter refilling a punchbowl. But,
taken together, the Metropolis snap-
shots would fairly represent the party
in full swing. From them, you could de-
duce whether, on average, people had
enjoyed themselves.

The Metropolis algorithm is one of
the most widely used and crops up in
such diverse fields as banking and as-
trophysics. But like MD, it’s stumped
by colloidal systems. The difficulty
lies in the big particles, which can’t be
lifted and repositioned without dis-
lodging smaller particles at high en-
ergetic cost.

Previously intractable systems are now within the modeler’s grasp,
thanks to an approach adapted from the study of lattice spin systems.
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Figure 1. These colloidal suspensions
consist of silica microspheres in dilute
nitric acid. Because of Van der Waals
attractions, the microspheres tend to
clump together, as shown in the top

panel. Adding charged nanospheres, as
shown in the bottom panel, prevents
the clumping. (Adapted from ref. 7.)


