
The strength of the electron–photon interaction is char-
acterized by the fine-structure constant a � 1/137.036.

Because a is small, quantum electrodynamics (QED), the
theory of interacting electrons and photons, can be solved
to very good approximation with the traditional technol-
ogy of pencil and paper. By contrast, quantum chromody-
namics (QCD), the generally accepted theory of strongly
interacting quarks and gluons, has proven to be remark-
ably resistant to that approach. But in recent years, ad-
vances in computer technology and algorithms have
brought the ab initio, numerical simulation of QCD to a
level of credibility that will have a significant impact on
scientific discovery.

Lattice QCD
In formulation, QCD and QED are strikingly similar. Both
are gauge-invariant quantum field theories. The key differ-
ence is that photons in QED are neutral; so they can’t in-
teract directly with each other. The gluon is the QCD ana-
log of the photon; it carries the strong force between quarks.
But quite unlike photons, gluons do carry color charge, the
analog of electric charge. So gluons interact directly with
each other as well as with quarks. (See the article by Frank
Wilczek in PHYSICS TODAY, August 2000, page 22.)

That seemingly innocent change has dramatic conse-
quences for phenomenology. It is the root of QCD’s daunt-
ing complexity. Electrons, positrons, and photons can be
separated and isolated at macroscopic distances. Quarks,
antiquarks, and gluons cannot. This prohibition, called
color confinement, assures that all the elementary parti-
cles (the hadrons) composed of quarks, antiquarks, and
gluons come in precise color-neutral combinations. Loosely
speaking, this means that they come either in quark–an-
tiquark pairs (the mesons) or in triplets of quarks (the
baryons). Several recently discovered “pentaquark”
baryons appear to combine a quark triplet with a
quark–antiquark pair (see page 19 of this issue.)

Why only color-neutral combinations? In QCD, quarks
can have three colors. Conventionally, they are labeled red,
blue, and green, but of course they have nothing to do with
optics. Antiquarks have the corresponding anticolors.
Triplets of quarks containing equal portions of the three

colors are color neutral.
Try to pry loose one of the three

valence quarks in a proton. Before
going much farther than the radius of
the proton (about 1 fm or 10–13 cm),
you’ve done enough work to create a
new quark–antiquark pair. Pairs
promptly appear, choose new part-
ners, and you find a meson in one hand

and a proton or neutron in the other. No isolated quarks!
At distances an order of magnitude smaller than 1 fm

or, equivalently, at interaction energies or momentum
transfers in the multi-GeV range, as, the energy-depend-
ent QCD analog of the fine-structure constant, is effec-
tively weak. In that limited regime, perturbation theory
works, and pencil-and-paper methods succeed. But for the
larger distances and softer interactions, where confine-
ment is the dominating process, as is effectively large and
we must resort to computerized numerical simulation.

In 1974, Kenneth Wilson at Cornell University for-
mulated a version of QCD on a discrete spacetime lattice
(see the left panel of figure 1) and, with pencil and paper,
used it to provide a plausible, but not rigorous, argument
for color confinement.1 Wilson argued that, on a coarse
spacetime lattice, the potential energy of separation of a
quark and an antiquark must rise linearly with distance.
In 1979 at Brookhaven National Laboratory, Michael
Creutz, Laurence Jacobs, and Claudio Rebbi demonstrated
the feasibility of doing meaningful numerical simulations
with Wilson’s formulation on a Control Data Corp 7600
computer.2 Shortly thereafter, Creutz obtained numerical
results for the confinement potential that supported Wil-
son’s conclusions. That success launched a new branch of
computational physics, called lattice gauge theory or lat-
tice QCD.3 The right panel of figure 1 shows a modern lat-
tice-QCD result for the quark–antiquark potential.4

High-precision calculations
For two decades after Creutz’s pioneering 1979 calculations,
refinements in algorithms and computing power brought
steady gains in precision and consistency. But only in the
past four years have powerful algorithmic and theoretical
improvements launched us into the age of high-precision
lattice QCD—at least for some key hadronic quantities.

By the standards of the strong interactions, “high pre-
cision” means 1 or 2%. The impact of this new precision ex-
tends beyond the strong interactions. Determining key fea-
tures of the weak interactions of hadrons—for example, 
the Cabibbo-Kobayashi-Maskawa (CKM) parameters—
requires correcting measured weak decay rates for strong-
interaction effects (see box 1). The uncertainties in our
knowledge of such fundamental parameters limits the 
precision with which the standard model of the elementary
particles can be tested and probed for new realms of
physics. 

The most important theoretical advance in recent
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years has been the development of improved actions, that
is, improved methods of formulating QCD on the lattice. As
in classical field theory, the QCD action is the integral, over
space and time, of the Lagrangian density. In lattice calcu-
lations, this four-dimensional integral is approximated by
summing over discrete lattice points in spacetime.

With substantial computational resources at NSF and
DOE national centers during the past three years, lattice
gauge theorists have used an improved “staggered fermion”
(ISF) action to generate, and make publicly available, a
large set of gauge-field configurations (see box 2).5 Stag-
gered fermion actions, introduced by John Kogut and
Leonard Susskind in 1976, are so called because the algo-
rithm spreads the fermion spins over adjacent lattice points. 

The newly available gauge-field configurations include
the vacuum-polarization (quark loop) effects of u, d, and s
quarks. Several lattice-QCD collaborations, working to-
gether,6 have recently used these configurations to deter-
mine a variety of hadronic quantities to an unprecedented
accuracy of 3%. All of those quantities had been measured
previously in the laboratory. Figure 2 plots the ratio of the
simulated value to the experimental one for each observ-
able. The only inputs were a few experimentally known
hadron masses that were used to determine the lattice spac-
ing and the masses of five of the quark flavors. The t quark
is too heavy to contribute. The rest is pure prediction.

The left panel shows the result from a widely used
quenched approximation (omitting quark-loop effects).
The right panel shows what happens when quark loops are
included in the calculations. The results show that quark-
loop effects are essential; when they are included, the
agreement with experiment is encouraging.

The quantities shown in figure 2 demonstrate the pre-
dictive capabilities of lattice QCD. The two hadronic decay
parameters fp and fK, which describe the strong-interaction
contribution to the weak decays of the p and K mesons,
measure their quark–antiquark wavefunctions at the ori-
gin. The particular mass-difference combinations shown in
the figure—involving the nucleon, the doubly strange J

baryon, and the ground states of the Bs (strange and bot-
tom flavored) and Y meson families—were chosen because
those linear combinations are rather insensitive to a vari-
ety of systematic errors.

The flavor-neutral c (charmonium) and Y (bottomo-
nium) meson families, quark analogs of positronium, are,
respectively, cc+ and bb+ bound states. The figure shows level
splittings between different orbital states of these “quarko-
nium” families. The c and b quarks, with masses of a few
GeV, are a thousand times heavier than the u and d. 

For the hadronic quantities in figure 2, extrapolation
to the physical u and d masses is well under control. But
many other important quantities, such as the nucleon
mass itself, present greater difficulties. We expect, how-
ever, to achieve comparable precision with the nucleon
mass, for example, once we have developed the extrapola-
tion procedure for it to the same level of sophistication we
already have for the p and K mesons.

As a byproduct of these calculations, one gets a new
value for the color fine-structure coupling as by combining
a nonperturbative lattice determination of energy scales
with lattice perturbation theory. This quantity is tradi-
tionally calculated at very high energies, where perturba-
tion theory applies. Although the starting energy scale of
the new determination is two orders of magnitude lower
than that of the perturbative calculation, the two values
turn out to agree reassuringly well. For as at 91 GeV (the
mass of the Z0 weak boson, the conventional point of com-
parison), the current lattice QCD calculation gives 0.121
� 0.003. The world average from other determinations is
0.117 � 0.002.

What advances do we foresee?
� CKM matrix elements. An immediate scientific objec-
tive is to determine the weak decay constants fD for the
charm-flavored D mesons and fB for the analogous bottom-
flavored B mesons. One needs those constants to extract
the CKM matrix elements (box 1) from the experimentally
measured meson decay rates. As we have done with fp and
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Figure 1. Lattice quantum-chromodynamic calculation. (a) In the Wilson lattice formulation, the gluon field operator U links
the quark fields q at adjacent lattice sites in the discretized four-dimensional spacetime. In the 3D internal color space of
QCD, q is a 3-vector and U is a 3 × 3 matrix. (b) A recent lattice-QCD calculation of the potential energy of separation be-
tween a quark and an antiquark.4
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fK, we expect to determine the heavy-flavored meson decay
constants to high precision.

Another important strong-interaction parameter, BK,
characterizes the influence of the strong interactions on
the remarkable and well-known quantum mixing phe-
nomenon in which a neutral kaon oscillates between the
positive strangeness K0 and negative strangeness K+ 0

states. The analogous but less well-measured process in-
volving the B0 and B+ 0 meson states is under current study

at the SLAC BaBar collider and the Belle collider at KEK
in Japan (see PHYSICS TODAY, May 2001, page 17). Both
measurements also determine elements of the CKM ma-
trix. Study of B-meson mixing and decay is an important
part of the Fermilab Tevatron program.
� The quark–gluon plasma. The cores of sufficiently
dense stars are expected to contain an intriguing phase of
matter, predicted by QCD, in which hadrons are so
crowded that quarks and gluons are “liberated” and move

as if they were in a kind of deconfined
plasma. The universe was very likely
such a quark–gluon plasma (QGP)
for a brief moment after the Big
Bang. Such a phase is anticipated to
manifest itself at extremely high
temperature or density. Experiments
under way at Brookhaven’s Rela-
tivistic Heavy Ion Collider (RHIC)
and at CERN bring heavy nuclei into
high-energy collision in hopes of cre-
ating the QGP for brief instants (see
the article by Thomas Ludlam and
Larry McLerran in PHYSICS TODAY,
October 2003, page 48).

Although lattice-gauge simula-
tions do not describe the kinematics of
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Figure 2. Comparing lattice QCD with experimental values for a variety of hadronic quantities. The ratios of simulated to
measured values are shown for lattice calculations with (right) and without (left) quark-loop effects. The quantities are p- and
K-meson hadronic decay parameters; mass-difference combinations between the J baryon and the nucleon and between the
ground-state Bs and Y mesons; and energy-level splittings between various bound states of the charmed quark and its anti-
quark (the c mesons) and between bound states of the bottom quark and its antiquark (the Y mesons). The quenched approx-
imation (left) is much less expensive to compute, but including quark-loop effects brings substantial improvement. The yel-
low bands indicate 1% departure from perfect agreement between calculation and measurement. (Adapted from ref. 6.)
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Box 1. The CKM Matrix Elements

Quantum chromodynamics (QCD) is the strong-interaction
part of the standard model that summarizes our current

understanding of the most fundamental interactions and parti-
cles in nature. Quarks come in six “flavors,” the lightest of
which, u (up) and d (down), have masses of just a few MeV
and make up the proton and neutron. The other quark flavors,
in order of increasing mass, are s (strange), c (charm), b (bot-
tom), and t (top). Each quark flavor comes in the three colors
that are the QCD analogs of electric charge. All hadrons are
color-neutral combinations of quarks and antiquarks (denoted
by overbars). 

The fundamental parameters of QCD are the quark masses
and the coupling strength as. Lattice formulation adds arbi-
trary computational parameters: the grid spacing a and the
total lattice volume. In numerical simulations we can vary all
the parameters, but the objective is to choose values that ap-
proach those in nature, including, of course, taking the lattice
spacing to zero while keeping the volume large enough (a few
fm on a side) that it doesn’t distort the physics.

In the standard model, weak interactions, unlike the strong
interactions, can change quark flavors. For example, the figure
at right shows a bottom-flavored B meson decaying to a
charmed D meson (plus positron and neutrino) with the meta-
morphosis of a b+ to a c+. Alternatively, the B meson can decay
by the weak annihilation of a b+ with a u. The fundamental
weak-interaction parameters include the measured coupling
amplitudes for such conversions of one quark flavor into an-
other (the red dots) with the virtual emission of the W boson
that mediates the weak interactions. These amplitudes are the
elements of the unitary 3 × 3 Cabibbo-Kobayashi-Maskawa
(CKM) matrix.

One of the big questions is whether there are still more
quarks to be discovered. If so, the true CKM matrix has to be
bigger than 3 × 3, and we would find that the incomplete
matrix describing the known quarks is not unitary. An intense
experimental and theoretical effort is under way to measure
the CKM matrix elements precisely enough to detect such de-
partures from unitarity. But to accomplish that, one has to
correct for initial- and final-state strong interactions between
quarks. That is where lattice QCD calculations become es-
sential. The gluons that mediate the strong interaction are
represented in the figure by wavy lines, sometimes sprouting
loops—virtual quark–antiquark loops. The weak decay
process occurs in an instant, but strong interactions set the
stage and dress the hadronic actors. 
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a heavy-ion collision, they can predict the equilibrium prop-
erties of the QGP: the phase diagram, the equation of state,
and fluctuations in particle number. Figure 3 contains the
result of a recent lattice-gauge calculation that shows how
the fluctuation of net strangeness density increases with
temperature in a hot, flavor-neutral ensemble of quarks and
antiquarks.7 The inflection point near 180 MeV in the fig-
ure is taken to indicate the transition to the QGP from a
lower-temperature phase of quarks and antiquarks con-
fined in hadrons. Such calculations provide crucial input for
phenomenological models of QGP formation and decay.

In a flavor-neutral ensemble, with equal populations
of quarks and antiquarks, the net baryon number van-
ishes. (A quark carries baryon number +1/3. For an anti-
quark, it’s –1/3). A long-standing algorithmic challenge has
been to find a way of simulating QCD at nonzero net

baryon-number density—for example, in stellar interiors
or the “nuclear fragmentation” regions of phase space in
relativistic heavy-ion collisions.

Introducing a nonzero chemical potential to push the
baryon density away from zero makes the determinant of
the quark-action matrix (box 2) complex. Then the weight-
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mean-square number of strange quarks per unit volume V,
plotted here in natural units (\ = c = 1), is dimensionless.

(Adapted from ref. 7.) 

Box 2. How Lattice Calculations Are Done

The successful numerical treatment of QCD uses the Feyn-
man path-integral technique to quantize the field theory.3

For gluons, the numerical problem is then reduced to carry-
ing out a massive multidimensional integration. Quarks,
however, present a greater challenge. The essential problem
is that quarks are fermions. In the Feynman path integral, they
are represented by anticommuting quantities called Grass-
mann numbers. Fortunately, the fermion integration can be
done by hand, leaving only an integration over the ordinary
numbers that describe the gluon degrees of freedom. But the
quarks make the gluon integrand more complicated. After the
quarks are integrated out, any quantity of physical interest—
for example, the mass of an elementary particle—is obtained
from observables O(U) that are functions of the gluon field U.
Its expectation value is given by

which is just a weighted average of the observable function
over the multidimensional integration volume. The weight is
determined by the purely gluonic action S(U) and the deter-
minant of the quark-action matrix M(U) that describes the
motion of the quarks and their interaction with the gluons. In
the language of perturbation theory, the quark determinant
generates the closed quark loops in Feynman diagrams.
These loops represent a polarization of the QCD vacuum.
They produce the quark–antiquark pairs whose creation
makes it impossible to pry one quark loose from a proton.

The so-called quenched approximation drops the quark
determinant in the numerator and denominator of the pre-
ceding equation, thereby omitting the quark loops. The de-
terminant can be included, but at a cost that increases by a
few orders of magnitude when one decreases the masses of

the u and d quarks toward their experimental values. Thus
even when vacuum polarization effects are included, it is
standard practice to carry out computations with unphysi-
cally large u and d masses and then extrapolate to their phys-
ical values.

One of the larger lattices in current practice has a regular
grid of 28 points in each of three spatial dimensions and 96
in time, with lattice spacing a � 0.1 fm and time intervals of
a/c. With eight gluon color combinations and four spacetime
link directions at each lattice site, that comes to 67 × 106

integration variables needed to describe the gluon field.
That’s definitely not the place to use Simpson’s rule! Instead,
one uses a variety of importance-sampling techniques.

The form of the weighted integral in the previous equa-
tion lends itself naturally to importance sampling. If the net
baryon density is zero and we are careful with the number of
quark flavors involved, the weight will be positive definite
and it can be treated as a probability. If we sample points Ui
for i ⊂ 1, 2, . . . N in the multidimensional integration space
according to that probability, the expectation value of O(U)
becomes a simple average of the values that O assumes on
each point in the sample:

The statistical error on this expectation value decreases like
1/=N++.

To specify one sample point Ui in the integration space re-
quires giving the value of the gluon field on each of its four
lattice links. With the large lattice grid described above, it
takes 600 megabytes to specify the complete gauge-field
configuration. A common computational strategy is to gen-
erate and archive a large sample of such configurations.
They then become a resource that can be used subsequently
to “measure” a wide variety of different observables.

∀ ¬ ⊂O O1
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N
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( )Ui
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ing factor in the first equation in box 2 can no longer be 
interpreted as a probability, and the usual importance-
sampling techniques lose their effectiveness. (A similar com-
plication plagues condensed-matter physics calculations for
systems in which the conduction-electron occupancy devi-
ates from half filling.) Good progress has been made recently
in obtaining results for small net baryon density.8
� Hadronic structure. The internal structure of the nu-
cleon is fundamental to nuclear physics. A principal sci-
entific goal is to determine quantitatively how quarks and
gluons produce the binding and spin of the nucleon. To that
end, vigorous experimental programs are in progress at
MIT, Thomas Jefferson National Accelerator Facility,
SLAC, Fermilab, DESY, and CERN. (See page 9 of this
issue.) RHIC will soon be joining the enterprise. The nu-
cleon is easy to study by lattice QCD, because it is the light-
est of the three-quark baryons. And determining the static
properties of hadrons is natural for lattice QCD. We hope
to understand the nucleon’s structure through a combina-
tion of numerical simulation and experiment.

What we can and can’t calculate
Lattice-gauge theorists use the Feynman path-integral
technique to quantize the field theory (see box 2). The
Feynman approach actually leads us to carry out calcula-
tions with an imaginary time coordinate. That feature is
standard in statistical quantum mechanics. In fact, the
Feynman integration over alternative paths determines
the partition function for an ensemble of interacting glu-
ons, quarks, and antiquarks in thermal equilibrium. In
lattice-QCD calculations, the temperature is inversely pro-
portional to the duration of the whole lattice volume in
imaginary time.

If we keep the imaginary-time duration small, we can
study high-temperature features such as the QGP. But if
we make the duration large enough, we’re simulating a
temperature close to zero. Quantities of interest at zero
temperature include the masses of a wide variety of
hadrons, their decay amplitudes, the quark–antiquark po-
tential, and various static properties of hadrons, such as
the internal distributions of charge and magnetization.

Lattice QCD near zero temperature also addresses the
complicated structure of the vacuum. The vacuum state of
QCD, its zero-temperature ground state, is remarkably
rich in structure.9 The gluon field fluctuates with twists
and turns, tracing out topological knots called instantons.
Understanding the ground state is fundamental to under-
standing QCD. 

We cannot, however, calculate everything. Because of
its close relationship to statistical thermodynamics, lattice

QCD in its current formulation is unsuited for simulating
real-time processes such as multiparticle scattering and
the nonequilibrium behavior of the QGP. For such
processes we rely on phenomenological models to extrapo-
late from the domain where lattice QCD does work.

The principal computational challenges faced by lat-
tice QCD are reducing discretization errors and extrapo-
lating down to the small physical masses of the u and d
quarks:
� Discretization errors. Representing spacetime by a
regular grid of discrete points introduces artifacts that be-
come small as the lattice spacing a is decreased. However,
the computational cost (the number of requisite computer
operations) grows very steeply with decreasing a—some-
thing like a–7 or a–8—when the computation includes
quark-loop effects. In the end, one must extrapolate to zero
lattice spacing. To improve the accuracy of that extrapola-
tion, we place a high premium on finding improved algo-
rithms that reduce discretization artifacts. Currently,
large-scale computations with improved action algorithms
work with a lattice spacing as small as 0.09 fm.
� Light-quark masses. Computational cost, at fixed a,
grows approximately as the inverse square of the quark
masses in question. That makes it too expensive to let the
u and d quarks be as light as they are in nature. (The pro-
ton is a hundred times heavier than the sum of its three
valence quarks.) In the limit of vanishing quark masses,
QCD has a special “chiral” symmetry from which one can
define a perturbative expansion in the small quark mass
and thus anchor the extrapolation down from the unphys-
ically high masses used in the lattice calculations. So if we
can simulate QCD in the regime where chiral perturbation
theory applies, we can extrapolate from lattice QCD to the
small u and d masses with some confidence. In current
large-scale lattice simulations, it is feasible to take the u
and d masses as low as three times their physical values.
That’s well within the range of chiral perturbation theory
and well below the quark-mass values that had to be used
in lattice calculations before the ISF improvement.

How improvement is accomplished
The key to the recent advances in lattice-gauge theory has
been the development of improved lattice actions for de-
scribing the motion and interaction of quarks and gluons.
The improvements refine the discretization of the quark
action. The ISF action is the most extensively exploited of
these algorithmic improvements.5

Let us examine one of the steps in the improvement
process. In a lattice simulation, the simplest term de-
scribing the interaction between quarks and gluons in-
volves the inner product of an antiquark field at one lat-
tice site and the quark field at a neighboring site. To
maintain gauge invariance, however, one also has to in-
clude in that product the gluon matrix U on the link join-
ing the two lattice sites.
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Figure 4. Circuitous paths linking quarks at neighboring lat-
tice sites improve QCD simulations by effectively smoothing
the sharp corners of the four-dimensional spacetime lattice.
The diagrams show different terms linking quarks in the ISF
action. The arrows represent gluon color matrices on links
between adjacent sites. The traditional unimproved action
used only term a. A chain of arrows is a product of such ma-
trices. The five-link diagram (c) involves three directions and
the seven-link diagram (d) is meant to represent all four
spacetime directions. Some paths, like f, link next-nearest
neighbors.



The improvement schemes use not only the shortest
path to connect adjacent sites but also a combination of
products of gluon matrices along longer, more circuitous
paths between immediate and more distant neighbors, as
shown in figure 4. With the correct linear combination of
such paths, we can reduce discretization errors, in effect,
by smoothing the sharp corners of the lattice. We remove
errors proportional to a2. So we’re left with errors that
scale like a4 and a2as. The added complexity of the cir-
cuitous paths increases the computational cost by a factor
of two or three, but the greater cost is handsomely repaid
in better accuracy at modest lattice spacing.

One way to measure the effectiveness of the improved
formulation is to observe how calculated quantities vary
with lattice spacing. For example, figure 5 compares the
lattice-spacing dependence of the ISF-action calculation of
the nucleon mass with calculations that use older action
algorithms.10 To avoid the added complication of extrapo-
lation, all of these lattice calculations used unrealistically

heavy quarks. Therefore the nucleon mass, in the limit of
vanishing a, comes out about 300 MeV too heavy. But what
matters in this comparison of quark-action algorithms is
the sensitivity to lattice spacing. The smaller the slope, the
better the improvement. Clearly, the ISF action does bet-
ter in this test. 

Given sufficient computational resources (see box 3),
the future prospects for high-precision lattice calculations
are excellent. The ISF action is only one of several im-
proved actions currently being investigated.11 Others make
even further improvements.12 Their formulation is more
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Figure 5. Calculated nucleon mass as a function of lattice
spacing a for a variety of lattice quark-action algorithms. The

smaller the slope, the better the algorithm. The blue points
indicate results with the unimproved staggered-fermion ac-
tion devised in 1976 and used well into the 1990s. The red

points indicate an improved version of Kenneth Wilson’s
original quark action used in the late 1990s. The ISF action,
represented by the green points, clearly shows the least de-
pendence on lattice spacing. The nucleon mass, in the limit
of vanishing a, comes out about 300 MeV too high because
all these calculations, for simplicity of comparison, used un-

physically high u and d masses and ignored quark-loop 
effects. (Adapted from ref.10.)

Box 3. Special-Purpose Computers for Lattice QCD

The rate-limiting computational problem
in lattice QCD is the solution of large

linear systems. These systems are well-
suited for massively parallel computers
with fast communication, high local mem-
ory bandwidth, and relatively small memory
per processor. Thus it becomes cost-
effective to consider special-purpose ma-
chines for lattice QCD calculations. These
can be custom-built machines like the
QCDOC computer designed by researchers
at Columbia University, Brookhaven, the
Japan Institute of Physical and Chemical
Research (RIKEN), and in Britain. Alterna-
tively, they can be specially configured PC
clusters built mostly from commercial parts.

The photo at right shows a QCDOC
daughter board with two nodes, each with
a gigaflop-per-second double-precision
IBM 440 PowerPC unit, 4 megabytes of
memory, and 12-way bidirectional commu-
nication.15 Sustained 10-Tflop/s QCD cal-
culation requires 20 000 such nodes. Euro-
pean examples include the custom-built
Italian apeNEXT computer.16 Currently, special-purpose lattice-QCD computers can be built at a cost of about $1 per Mflop/s.

Practically the entire US lattice gauge theory community, a group of about 50 scientists, has been working together for the past
four years to develop the computational infrastructure it needs to study the wide variety of high-energy and nuclear physics prob-
lems that require numerical QCD simulation. In addition to the QCDOC, large PC clusters are under development at Fermilab and
Jefferson Laboratory. The US Department of Energy’s SciDAC advanced computing program is providing funds for the development
of community software to facilitate efficient use of these powerful computers.17
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complicated; their importance-sampling algorithms are
not yet ready for large-scale computation. But we expect
significant gains in the near future.

An altogether different approach emphasizes a more
accurate treatment of chiral symmetry at nonzero lattice
spacing that provides much better control of the extrapo-
lation to the physical u and d quark masses.13,14 That ap-
proach is considerably more expensive than the ISF action,
but some promising work is in progress. It’s important to
pursue alternatives to ISF for two reasons. First, the im-
plications of some of the approximations used in the ISF
simulation are not completely understood. Second, sys-
tematic uncertainties in the chirally accurate methods and
the ISF methods are sufficiently different that they pro-
vide good cross checks.

A host of interesting fundamental physics questions
await application of the new tools. These include stringent
tests of the standard model of particle physics, full char-
acterization of the quark–gluon plasma, quantitative de-
termination of the structure of the nucleon, and the pre-
diction of masses and decay channels for observed and
conjectured exotic hadronic states, including pentaquarks,
purely gluonic particles called glueballs, and quark–gluon
hybrids (see PHYSICS TODAY, September 2003, page 19).
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