remember that the committee was advisory and not an oversight or policysetting group. It was simply no longer needed, he said.

Jim Dawson

Bush Team Unveils 10-Year Climate **Change Research Plan**

With political leaders describing it as "historic" and government scientists defending it as "intellectually sound," the Bush administration released its 356-page "Strategic Plan for the Climate Change Science Program" at a lengthy press conference in late July. The report, presented specifically as a 10-year research plan and not a policy document, will coordinate and amplify climate change research now conducted in 13 federal agencies.

Noting that the federal government already spends \$4.5 billion a year on "climate change-related work," Secretary of Energy Spencer Abraham said that the new program "will find the answers to many unanswered questions [about global warming] and lead to better technology [to deal with the warmingl." To bolster the scientific credibility of the report, Abraham cited a letter from the directors of 11 Department of Energy (DOE) research labs; those officials endorsed the report as a "much needed science-based vision."

John Marburger, director of the administration's Office of Science and Technology Policy, said the report represented "a determined effort to outline the way forward from the present state of knowledge to find answers about why our climate continually changes, how much the climate is expected to change during the next year, next several years, next decades, and next 100 years, and how much climate change is predictable, including abrupt climate change."

Several environmental groups and skeptical Democrats on Capitol Hill criticized the report not so much for what it contained as for what it lacked. Daniel Lashof, a scientist with the Natural Resources Defense Council, said the report was a "distraction" from the failure of the administration to take steps to curb greenhouse gases, particularly carbon dioxide.

Representative Mark Udall (D-Colo.) accused the administration of trying to avoid the problems caused by global warming with a plan that "doesn't help us reduce our vulnerability to present and future global changes. Basic research alone isn't

enough. Going back to the drawing board is only a stalling tactic."

Government scientists involved in the report acknowledged the divisiveness of the global warming issue, and pointed out several times during a press briefing at the Commerce Department that the program is designed to give understandable scientific "products" to policymakers. "We will not be dabbling into policy," said Ari Patrinos, who directs the Office of Science's biological and environmental research division at DOE. "At the same time, we're not just throwing information over the wall and hoping it will stick somewhere useful. It will be more of a dialogue that may translate into useful policy."

The plan has four goals: to extend knowledge of Earth's past and present climate, improve understanding of what is causing changes in Earth's climate, reduce uncertainty in projections of future climate change, and understand the sensitivity and adaptability of natural and managed systems to climate change. The plan also incorporates a recommendation by officials from the American Physical Society, the American Geophysical Union, and several other scientific societies that research be done on the potential effects of climate variability and change on human health and welfare.

The report is available online at http://www.climatescience.gov/Library/ stratplan2003. Jim Dawson

Wadsworth Takes ORNL Helm

As the new director of Oak Ridge National Laboratory in Oak Ridge, Tennessee, on 1 August Jeff Wadsworth became responsible for a \$1 billion annual budget and 3800 researchers. He succeeded William Madia, who is now executive vice president for laboratory operations at Battelle, which, jointly with the University of Tennessee, oversees ORNL for the US Department of Energy (DOE).

A materials scientist from the UK, Wadsworth came to the US in 1976 and has racked up experience in both research and management. He spent 12 years at Lockheed Missiles and Space Co (now Lockheed Martin Corp), until he was lured to Lawrence Livermore National Laboratory, which, he says, was seeking people from industry to help with technology transfer of "what was behind the fences" of the weapons lab. At LLNL, Wadsworth researched metals deformation at high temperatures and low stresses and superelastic behavior of

metals and ceramics. He also pursued his hobby of "swords and steels"through which he studies the origins of the Iron Age—and served for seven years as the lab's deputy director for science and technology.

From August 2002 until his move to ORNL, Wadsworth was at Battelle headquarters in Columbus, Ohio. There, among other things, he was part of the White House transition planning office that helped design the S&T section of the emerging Homeland Security Department.

"Jeff is an internationally respected scientist, outstanding leader, and innovator in such fields as materials science and homeland security." Raymond Orbach, director of DOE's Office of Science, said in a statement. "He is a superb choice for ORNL, the local community and the nation.'

At ORNL, says Wadsworth, "the first order of business is to deliver on the things we have promised to dobuild the Spallation Neutron Source and the neutron science program, develop the next generation of supercomputer architecture, build the center for nanophase materials, and grow the biology and homeland security programs. That's a tall order." In parallel, he adds, he will work with others on a long-range vision for the lab. One tricky area "is to have a balance between investing in new facilities, equipment, and programs and at the same time eliminate legacy problems," Wadsworth says, referring to radioactive and chemical contamination at the lab.

ORNL, says Wadsworth, "has a feel of vitality and growth. It has such a broad spectrum of multidisciplinary science, an interest in commercializing work that comes out, and educational work—it's that aggregate that makes it exciting. I think the national labs are wonderful, and I am thrilled to be running one."

Toni Feder

Scientists Plunge Into Policy

At an interagency meeting on international regulation of biotechnology products, an astronomer represents the US Department of State. A particle physicist works on plans for the distribution of potassium iodide in case of a terrorist-caused or accidental release of radioactivity. A biophysicist proposes a formula for allocating Medicare prescription drug benefits. These are examples of what science fellows in Washington, DC, are up to. This fall, some 95 scientists and engineers are scheduled to take up fellowships in Congress and executive branch agencies.

"When you're doing science, you try

to be as much of an expert as anyone in your topic,' says Chris Beck, a biophysicist who this summer completed a year-long congressional fellowship sponsored jointly by the Optical Society of America (OSA) and the International Society for Optical Engineering (SPIE). On Capitol Hill, he says, "being an expert on an issue means you can understand the reports written by the experts." It can be unnerving, he adds, to be considered an authority on such a broad range of issues.

Roughly 30 scientific societies sponsor scientists and engineers each year under the auspices of the American Association for the Advancement of Science. About a half dozen are sponsored by physics societies. The American Institute of Physics, with support from the American Astronomical Society, has two fellows in the State Department—which for three years running has paid for one of them. AIP's first State Department fellow, George Atkinson (2001-02), this month becomes the science and technology adviser to the Secretary of State (see the story on page 32).

And in Congress, AIP is sponsoring a fellow this year after a one-year hiatus. Three AIP member societies also sponsor congressional fellows annually: the American Physical Society (APS), American Geophysical Union (AGU), and OSA. (For information on the fellowships, see the box on page 36.)

Protocols of diplomacy

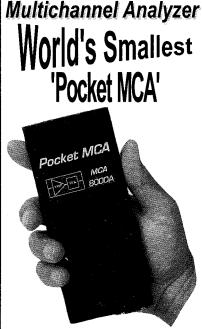
"Anyone in the State Department can have a tremendous influence on a national level," says AIP State Department fellow Gretchen Lindsay. "Issues may only be addressed by one or two people, so those people shape what goes on." Lindsay, a space physicist with military and space systems experience, took leave from her job as project engineer at the Aerospace Corp in Colorado Springs, Colorado, for the 2002–03 fellowship. Working in the State Department's Bureau of Political-Military Affairs, Lindsay's primary focus was on formulating international cooperative R&D initiatives to promote cybersecurity. Now back at her old job, she plans to return to the State Department monthly as a

consultant.

Astronomer Stefi Baum is an AIP fellow in the State Department's Bureau of Economic and Business Affairs. "I was looking forward to a new challenge, to learning a new area,' says Baum, who after her fellowship plans to return to her post as head of engineering and software services at the Space Telescope Science Institute in Baltimore, Maryland. During her fellowship, she worked on biotechnology and agricultural initiatives that would, for example, help developing countries monitor genetically engineered products through regulatory processes. She also prepared materials explaining how the US performs risk analysis of emerging technologies. Coming in with the "ivory tower, academic view of the federal government," Baum says, "I was pleasantly surprised at the intelligence and motivation of the people at the State

Hirsch

Koehler



Rosenberg

On Capitol Hill

Department."

When Beck joined the staff of Representative Loretta

Size: 6.5" x 2.8" x 0.8" (165mm x 71mm x 20mm) Weight: <300 grams (including batteries)

The MCA8000A is a full featured, low power Multichannel Analyzer intended to be used with a wide variety of detector systems.

- 16k data channels
- Stores up to 128 spectra
- 24 hours of continuous data acquisition from two 1.5V AA batteries
- Conversion time ≤5 ແs (≥200,000 cps)
- Two stage input analog pipeline
- Differential nonlinearity <±0.6% Integral nonlinearity <±0.02% Sliding-scale linearization
- Two peak detection modes: First peak after threshold (nuclear spectroscopy) Absolute peak after the threshold (particle counter calibration in clean rooms)
- Two TTL compatible gates for coincidence & anticoincidence
- Stand-alone data acquisition
- Stored spectra protection via software security & serial ID number; date-time stamp
- 115.2 kbps serial interface Free Windows & DOS software

AMPTEK INC.

6 De Angelo Drive, Bedford, MA 01730-2204 USA Tel: +1 (781) 275-2242 Fax: +1 (781) 275-3470 e-mail: sales@amptek.com www.amptek.com