Moving Through Curved Spacetime

Search and Discovery piece by Steven K. Blau (PHYSICS TODAY, June 2003, page 21) discusses Jack Wisdom's work showing that the position of an object can be changed when that object modifies its shape by extending and retracting across a Schwarzschild metric. Although this result may be new to theorists, it is already known to rocket scientists.

In a paper presented in 1990, I showed that by changing the length of a tether in a gravitational gradient that is, in curved spacetime—one can modify the orbit, even to the extent of making the object climb away from the planet without expenditure of reaction mass.1 In 1987, Manuel Martinez-Sanchez and Sarah Gavit had calculated similar results.2 One can't forces—one can use the difference in force to push against gravity.

References

1. G. A. Landis, Acta Astronautica 26, 307 (1992).

push on flat spacetime, but in a region of curved space—or, if you prefer, tidal

isdom comments: Geoffrev Landis is correct that, in Newtonian gravity, cyclic changes in the shape of an extended body can work against the gravity gradient to effect certain changes in the orbital parameters. For example, tidally induced shape changes of a synchronously rotating

2. M. Martinez-Sanchez, S. A. Gavit, J.

Guid. Control Dvn. 10, 233 (1987).

lau replies: This letter speaks

to issues considered by Jack

response.

Wisdom, so we contacted him for a

Geoffrey A. Landis

Cleveland, Ohio

(geoffrey.a.landis@nasa.gov)

NASA Glenn Research Center

natural satellite can damp the orbital eccentricity of the satellite. However, he is incorrect in identifying that effect with swimming in spacetime.

Cyclic changes in the shape of a body in the curved spacetime of Schwarzschild geometry can lead to net translation of the body. The swimming effect depends on curvature; it does not occur in the flat space of Newtonian gravity. It is a geometric effect: The amount of the translation does not depend on how fast the shape cycle is executed. In the Newtonian effect that Landis cites, there is no translation of the center of mass for fast cycles. That the swimming effect is a relativistic one is apparent in its dependence on the speed of light.

Jack Wisdom

Massachusetts Institute of Technology Cambridge

More on Early LEDs n their article "The Promise and Challenge of Solid-State Lighting" (PHYSICS TODAY, December 2001, page 42), Arpad Bergh, George Craford, Anil Duggal, and Roland Haitz show a graph (page 43) of performance of light-emitting diodes as a function of time. The graph obscures the early history by suggesting that GaP:Zn,O devices first appeared in 1968, whereas by that time a number of manufacturers had them on the market. The breakthrough in gallium phosphide came in 1962 when Jerzy Starkiewicz and I discovered that good red emission required both zinc and oxygen to be present, and we mapped the appropriate concentration ranges.¹ That work allowed for the development of devices (we called them "crystal lamps") with sufficient reproducibility for manufacture. They were

the international electronic journal of optics

Articles accepted for Optics Express appear just 8 weeks from the time they were submitted. And Optics Express is one of the few online journals capable of publishing nearly every multimedia format available to authors in the physical sciences.

If accelerated time to publication weren't enough, Optics Express also claims a Top 10 spot among all journals published in optics and photonics worldwide. It gained that coveted position on its very first ranking by ISI. That means articles in Optics Express are read and cited more often than the articles in 40 other optics journals.

In part that's because Optics Express is an OSA journal, enjoying the same rigorous peer review and editorial excellence as OSA's other top-ranked publications.

Over OpEx's six-year history, readers have learned to rely on its rapid publication, exciting format, and high-quality research. And OpEx is still available worldwide at no cost to readers!

SUBMIT YOUR ARTICLE TODAY!

Peer-Reviewed Excellence, **Rapid Publication**

www.OpticsExpress.org