According to the citation, Teller, who was born in 1908 in Budapest,

Teller

Hungary, left Europe "to escape the rise of Nazi Germany. After arriving in America, he established himself as a premier physicist. His work on national defense projects such as the Manhattan Project and the Strategic Defense

Initiative helped protect our Nation and bring about the end of the Cold War.'

"In my long life," said Teller, "I had to face some difficult decisions and found myself often in doubt whether I acted the right way. Thus the medal is a great blessing for me."

For the past 28 years, Teller was a consultant to the Lawrence Livermore National Laboratory, where he was a director emeritus. He also was a senior research fellow at Stanford University's Hoover Institution on War. Revolution and Peace.

Teller died at his home in Palo Alto, California, on 9 September.

In Brief

The United Kingdom Atomic Energy Authority gave the nod to Chris Llewellyn Smith to direct its Culham division, located near Abingdon, England. A senior research fellow in physics at Oxford University, Llewellyn Smith took his post on 8 September. He succeeds **Derek** Robinson, who died in December 2002.

he University of California, Santa Cruz, has added a new faculty member. In July, Sriram Shastry joined the university as a professor of physics. He previously had been a professor of physics at the Indian Institute of Science in Bangalore, India.

t the Third International Confer-At the Initial International Sciences on Inertial Fusion Sciences and Applications in Monterey, California, last month, the American Nuclear Society bestowed its 2003 Edward Teller Medal on two recipients: Larry Suter and Hideaki Takabe. Suter was cited for his "seminal work on almost all aspects of laser hohlraum physics." He is the associate program leader for inertial confinement fusion theory and design at Lawrence Livermore National Laboratory. Takabe, who is a professor in the Institute of Laser Energetics at Osaka University in Japan, was acknowledged for his "pioneering work on laser-plasma interactions, atomic physics, and hydrodynamic instabilities of laser implosions."

fter 16 years as director of the Russ-Aian-based Ioffe Physico-Technical Institute. Zhores Alferov stepped down in June to become the institute's scientific supervisor. Andrei Zabrodskii, former deputy director of the institute, is the new director.

oe Kilkenny became manager of Uthe General Atomics inertial fusion

technology division in La Jolla, California, in June. Formerly a senior physicist at Lawrence Livermore National Laboratory, Kilkenny replaced Jill Dahlburg, who is now a senior scientist for science applications at the Naval Research Laboratory in Washington, DC.

The Pennsylvania State University's physics department has added two new assistant professors to its ranks. Alejandro Perez joined the faculty in August and Réka Al**bert** became a faculty member in June.

Obituaries


Olli V. Lounasmaa

lli V. Lounasmaa, a pioneer of ultra-low-temperature physics and engineering, died on 27 December 2002 while swimming in the Arabian Sea on his vacation trip to the Indian state of Goa.

Born on 20 August 1930 in Turku, Finland. Olli received his master's degree in experimental physics from Helsinki University in 1953. He continued his studies in the Clarendon Laboratory at Oxford University. His PhD project, under the supervision of Ron Hill, was to measure the thermodynamic properties of liquid helium-4 between 1.5 and 20 K. At Clarendon, he learned about and adopted the visions of such celebrated low-temperature physicists as Francis Simon, the head of the lab, and Nicolas Kurti, the pioneer of nuclear cooling, and discovered the importance of the indepth theoretical support supplied by Brebis Bleaney and Roger Elliott. In those days, the supply of liquid hydrogen for precooling purposes was the principal bottleneck that forced different groups to take turns cooling down their experiments. Olli demonstrated his organizational skills among the graduate students by becoming the self-styled clearing agent for the liquid hydrogen supply.

After graduating in 1958, Olli gained further international experience as a postdoctoral researcher at the Argonne National Laboratory from 1960 to 1964. Under the leadership of Oliver Simpson, Olli constructed one of the first liquid helium-3 evaporation refrigerators and launched a series of specific-heat studies on rare earth metals down to a temperature of 0.4 K.

In 1965, Olli was appointed professor of technical physics at the Helsinki University of Technology. In

Olli V. Lounasmaa

the 1960s, academic research in Finland enjoyed improved funding. Combined with a good supply of bright students, Olli started an ambitious and energetic research program of the then lowest temperature regimes by focusing first on refrigeration and measuring techniques. He developed adiabatic demagnetization cooling, ³He/⁴He dilution refrigeration, nuclear cooling, and the adiabatic compression of liquid 3He, known as Pomeranchuk cooling. It is from this work that nuclear cooling, performed with a powerful superconducting magnet and reliable precooling with ³He/⁴He dilution refrigeration, became the accepted technique in cryogenics. With his managerial skills and straightforward no-nonsense attitude, he built his low-temperature laboratory in 10 years from nothing to an international center—a task that serves as a model for science management.

Olli organized and hosted the 14th International Conference on Low-