division; he was associate director along with Ralph Livingston for the period mentioned in the obituary.

It was a privilege and a pleasure to be closely associated with Sheldon for so long. We were friends as well as colleagues from a few days after he joined my group on the Manhattan Project.

Reference

1. I. Langmuir, Phys. Rev. 2, 329 (1913). Ellison H. Taylor

(ellisontaylor@worldnet.att.net) Oak Ridge, Tennessee

RCA's Role in Early Superconducting Magnet Research

e would like to add a note concerning some of the historical information published in our article "Superconducting Magnets Above 20 Tesla" (Physics Today, August 2002, page 37). During the 1960s, the RCA Laboratories in Harrison, New Jersey, also made significant contributions to the early development of niobium tin conductors and magnets, based on the chemical vapor deposition process. In particular, by 1968, RCA had developed a 14-T magnet using their Nb₃Sn tape conductor. The company discontinued development of superconducting magnet technology in 1970. We thank J. J. Hanak for bringing to our attention the details of RCA's activities.

Our article was not intended as a rigorous review, and the history was intentionally kept short to highlight the progress in the early days of development. Rather, our aim was to give some perspective for later largemagnet development at extreme magnetic fields, development that includes the use of the new hightemperature superconductors.

Steven W. Van Sciver

(vnsciver@magnet.fsu.edu)Florida State University Tallahassee

Kenneth R. Marken

(ken.marken@ost.oxinst.com) $Oxford\ Superconductor\ Technology\ Inc$ Carteret, New Jersey

Sometimes It's the Ref Who Fouls Out

efereeing remains essential to scientific publishing, and most authors appreciate and benefit from it. The abusive report, fortunately uncommon, represents one of the

exceptions to the ideal of careful, thoughtful refereeing. For veterans of publishing, a vitriolic report is more an irritant than anything else, but newcomers can become discouraged. My daughter's thesis adviser, a molecular biologist, told me that she was so upset by the abusive report on her first submitted paper that she nearly gave up research.

pointing out errors, the use of harsh language remains unjustified. Such lack of judgment in matters of professional courtesy may also be indicators of poor scientific judgment. For example, a recent paper of mine on Laplacian orbit determination was declared "hopeless" by the referee, despite the fact that I successfully calculated an orbit using the method. A careful reading of the report confirmed my suspicion about that referee's scientific judgment: He showed little concern with factual errors and apparently had a visceral reaction to anyone questioning Gaussian orbit determination, an

eree's reports would be to eliminate anonymity. I always sign my referee's reports. If authors disagree with me, at least they know where to direct their ire. Editors, however, seem to prefer anonymity for referees. An author who receives an abusive report should immediately request review by another referee.

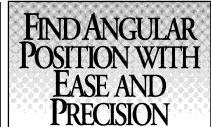
The editor of the journal to which I submitted the paper on Laplacian orbit determination afforded me an even better solution. He sent me an e-mail followed by a letter; in both, he apologized for the harsh tone of the report and offered to send my paper to another referee. That type of response should be standard among journal editors. It does add to their workload, but without submitted manuscripts, editors have no job to perform. And authors, who spend considerable time and effort to make a manuscript publishable, deserve an impartial review and, certainly, a modicum of courtesy.

Richard Branham

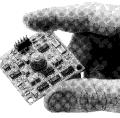
Argentine Institute for Snow and Ice Studies

Mendoza, Argentina

Correction


Institute of Physics announced its award winners for the year 2003, not 2002 as reported.

Even if the referee is justified in


alternative to Laplace's method. The ideal solution to abusive ref-

(rlb@lanet.com.ar)

November 2002, page 87—The

GRAVITY REFERENCED INSTALL **ANYWHERE** UP TO $\pm 60^{\circ}$ **OPERATING** RANGE

Our precision tiltmeters give you new abilities to measure the angular movement and position of: • Antennae

 Lasers • Telescopes • Foundations Any machine or structure

Use to find level, measure static tilts or determine pitch and roll. Choose from

- 500 Series nanoradian resolution
- 700 Series microradian resolution
- 900 Series 0.01 degree resolution

1336 Brommer St., Santa Cruz, CA 95062 USA Tel. (831) 462-2801 • Fax (831) 462-4418 applied@geomechanics.com www.geomechanics.com

Circle number 23 on Reader Service Card

