Taking the next step

The central drawback of the current
experiments is that they need a thick
detector to stop the “*Fe ions, and the
thick detector captures the decay pro-
tons. To look for correlations, one
needs to follow the proton trajectories
(angles and energies). Blank and
members of his team at GANIL plan
to replace the stack of silicon detectors
with a gas cell to stop the Fe ions.
The gas cell will form a time-projection
chamber in which an electric field will
move the charge cloud produced by the
decay toward a two-dimensional
detector. The new setup should deter-
mine the protons’energies and angles.
So far the researchers have built a pro-
totype detector and hope to complete
the full-scale one in a year or so.

The observation of proton pairs
coming from the nucleus may have
broad interest beyond nuclear
physics, Nazarewicz said. There
might be common threads, for exam-

ple, between studies of paired protons
within a nucleus and considerations
of finite size effects on superconduct-
ing Cooper pairs of electrons in, say,
aluminum grains. Indeed, the term
“nuclear superconductivity” was
introduced by David Pines at a con-
ference in Rehovot, Israel more than
40 years ago to describe work he had
done with Aage Bohr and Ben Mottel-
son; the trio showed that the then-
new Bardeen-Cooper-Schrieffer theo-
ry of superconductivity could also be
applied to explain pairing phenomena
in nuclei.!

BARBARA GOSS LEVI
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The Unusual Thermodynamics of
Microscopic Systems

he thermodynamic behavior of

microscopic systems can be quite
different from that of macroscopic sys-
tems, for which fluctuations in ther-
modynamic quantities are usually
negligible. As physicists strive to
build ever smaller machines, it
becomes important to understand, for
example, the statistics of the work
done on or by a machine as it moves
from an initial to a final state. That

1

Theoretical distributions of work

delivered to small objects have
some surprising properties recently
confirmed by experiment.

work is not simply a function of the
beginning and ending states. But—
according to the usual telling of the
story—the work is determined once
one is given a path or process that
connects the states.
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RELATIVE PROBABILITY

The usual story is
not strictly accurate.
For example, in a sys-
tem connected to a heat
bath, uncertainties of
order kT arise from the
Boltzmann distribution
of energies in the initial
and final states, and
also from energy ex-
change with the heat
bath as the system

TIME (5)

FIGURE 1. INTEGRATED TRANSIENT FLUCTUATION
theorem relates the relative probability of delivering neg-
ative versus positive work to an experimental vessel
(black) to the average of exp(— W) over those trials deliv-
ering positive work (red). To within statistical error, the
two curves are equivalent, as demanded by the theorem.
The relative probability is nearly unity for short times,
but it falls to zero over the 3-second period shown in the
graph. Note, though, that even after 2 s, one occasional-
ly sees negative work. (Adapted from ref. 3.)

3 moves along a path con-
necting those states.
That means the work
given to a system can-
not be uniquely speci-
fied, even if the path is
known. The energy
uncertainties in macro-
scopic systems, though,
are tiny compared to the
average work. Thus, for
practical purposes, one
can say that two states
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and a connecting path determine work
in those systems. If the system is
microscopic, the statistical distribution
of work associated with the system’s
change from its initial to its final state
can have practical consequences.

Over the past decade, a good deal of
theoretical effort has been devoted to
spelling out the nature of work distri-
butions. In the past few months,
experimental tests have been conduct-
ed for two particular theoretical
results—the transient fluctuation the-
orem of Denis Evans (Australian
National University in Canberra) and
Debra Searles (Griffith University in
Brisbane)! and the nonequilibrium
work relation derived by Chris Jarzyn-
ski (now at Los Alamos National Lab)?.

Evans and Searles joined forces
with three other colleagues from ANU
to test the transient fluctuation theo-
rem.? At about the same time, a team
from the University of California,
Berkeley, and Lawrence Berkeley
National Laboratory, led by Carlos
Bustamante, explored the validity of
the nonequilibrium work relation.*
Both theoretical predictions passed
admirably.

Transient fluctuation theorem

The transient fluctuation theorem is
one of many that tackle the statisti-
cal nature of fluctuations. Specific
forms of the various theorems depend
on which thermodynamic parameters
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(temperature, volume, and so forth)
are held constant, whether the sys-
tem is prepared in an equilibrium
state, and other factors. The tran-
sient fluctuation theorem tested by
Evans and coworkers applies to sys-
tems in a constant-temperature envi-
ronment and initially at equilibrium.
For the Australian team’s work, in
which an optical trap interacts with
an experimental vessel, the theorem
assumes the form

P(W)/P(—W) = exp(W).

Here, W is a dimensionless number
giving the work (divided by £T) deliv-
ered to the vessel; P(W) is the proba-
bility that, in a given experiment,
work W will be delivered to the vessel;
and P(—W) is the probability that the
vessel does work W on the trap. Mul-
tiplying both sides of the above equa-
tion by P(—W) and integrating over W
from — oo to 0 yields an integrated ver-
sion of the fluctuation theorem

P(W < 0)/P(W > 0) = <exp(-W)>_,

where P(W < 0) is the probability that
the vessel does work on the trap and
P(W > 0) is the probability that the
trap does work on the vessel. The
angle brackets and subscript denote
an average over all trajectories with
positive work delivered to the vessel.

Testing transient fluctuations

To test the transient fluctuation theo-
rem, Evans and colleagues measured
the work delivered to a room-temper-
ature vessel consisting of 6.3 um-
diameter latex beads in contact with
a water bath. A focused external laser
beam created an optical trap that
exerts a Hooke’s-law restoring force
with known force constant on a bead
near its focal point. Initially the ves-
sel was at rest and a bead was allowed
to come to equilibrium in the trap.
Then Evans and coworkers moved the
vessel at 1.25 um/s relative to the
fixed trap. As a consequence of this
movement, the bead was dragged
away from the focus of the trap and
subject to an external force, which
causes it to move in the trap’s poten-
tial well.

The Australian group observed the
latex bead’s position 100 times per sec-
ond for a total of 10 seconds. At each
time step, the position of the bead
yielded the force exerted by the optical
trap. The product of force and the dis-
tance the vessel moved gave the incre-
mental work added to the vessel by the
trap at each time step. Effects associ-
ated with the initial acceleration of the
vessel were negligible.

Figure 1 shows the experimentally

_____

FREE ENERGY
o

) | |

15 20 25 30

EXTENSION (nm)

FIGURE 2. FREE ENERGY of a folded RNA molecule depends on the extent by which
it is stretched. The graph shows theoretical free-energy estimates (divided by £7)
given by the nonequilibrium work relation (dashed lines) after subtracting the meas-
ured value of the free energy determined from reversible unfolding. Two different
rapid unfolding rates that lead to two different estimates are shown: 34 pN/s (black)
and 52 pN/s (red). The reversibly determined free energy has an experimental error
of £1/2, so the estimated values should lie in the yellow band centered about the
blue baseline at an energy difference of zero. Systematic errors associated with instru-
ment noise may be responsible for the underestimates at large extensions. (Adapted

from ref. 4.)

determined values for the right- and
left-hand sides of the integrated fluctu-
ation theorem as a function of time for
the 540 trajectories studied by the Aus-
tralian group. The two curves agree to
within statistical error. Discrepancies
at early times, for which the work val-
ues are small, may arise because of
experimental limitations in measuring
the position of the bead and difficulty
in determining the precise time at
which the vessel began to move.

The nonzero probability for nega-
tive work observed for up to about two
seconds is worthy of comment. Imag-
ine, as is often the case, that after a cer-
tain time, the bead has a higher ener-
gy than it had initially. Then, if the
work done by the trap on the vessel
(bead plus bath) is negative, energy
has been delivered to both the bead
and the optical trap interacting with
the vessel. That energy came from the
water bath—just the sort of energy
transfer prohibited by the second law
in the thermodynamic limit of infinite-
ly large systems: Heat has been con-
verted to work with 100% efficiency.

Nonequilibrium work relation

Bustamante and his colleagues meas-
ured the work delivered as they
stretched and recompressed a folded
RNA molecule that was prepared in
equilibrium and kept in a constant-
temperature and constant-pressure
environment. Associated with the
change in length of the molecule is a
change in the Gibbs free energy,
which can be thought of as the work
needed to reversibly change the
length. (For reversible processes, the
work is well defined.) When one
manipulates a system so as to change
its free energy, a generalized form of
the transient fluctuation theorem
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reflects that change:®
P(W)/P(—W) = exp(W—-AG).

Here, P, denotes the probability dis-
tribution for the process that is the
time reversal of the “forward” process
yielding the distribution P, and AG is
the change in the free energy (divid-
ed by kT). So, for example, in the
Berkeley experiment, if the forward
process is stretching the RNA mole-
cule, the reverse process is compress-
ing it. In the Australian experiment,
time reversal takes a right-moving
vessel and gives it a velocity to the
left. Left—right symmetry means that
for that experiment, one need not dis-
tinguish between the forward and
time-reversed distributions.

Multiply both sides of the preced-
ing equation by Pp(—W)exp(—W) and
integrate over W from —oo to +oo.
Because G is a state function, its
change comes out of the work integral,
and yields the result

exp(—AG) = <{exp(-W)>,

where the angle brackets denote an
average over all trials. The remark-
able feature of this so-called nonequi-
librium work relation is that it allows
extraction of information about a sys-
tem’s free energy change—a property
of its equilibrium states—by studying
the work distribution arising from a
series of processes in which the sys-
tem starts at equilibrium but need not
be in equilibrium at any other time
(including in its final state). Jarzynski
derived the nonequilibrium work rela-
tion from first principles in 1997. The
later elegant demonstration begin-
ning from the generalized transient
fluctuation theorem is due to Berke-
ley’s Gavin Crooks.?
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Testing nonequilibrium work

If one stretches a rubber band very
slowly, and then lets it slowly relax,
one does no net work on the band. But
if the rubber band is stretched quick-
ly, its force constant increases. Quick
compression yields a reduced force
constant. For rapid operation, one
does net work on the band even
though its final and initial states are
the same.

The folded RNA molecule that Bus-
tamante and colleagues studied is
similar to the rubber band in many
respects. When the Berkeley group
unfolded and refolded the molecule
slowly enough, increasing the applied
force, say, by 5 piconewtons each sec-
ond, the process was essentially
reversible: In particular, to within
experimental error, no net work was
associated with an unfolding—refold-
ing cycle. When they unfolded and
refolded the RNA rapidly (34 and
52 pN/s) they generally did work on
the molecule. But the transient fluc-
tuation theorem asserts, and Busta-
mante and colleagues confirmed, that
sometimes the work was negative.

To manipulate the RNA molecule,
the Berkeley group attached each end
of the RNA molecule to its own poly-
styrene bead. One bead was deliber-
ately moved a measured distance,
which stretched the RNA molecule,
while the other was held in an optical
trap (but also moved in response to
the stretching). The Berkeley group

determined the force acting on the
RNA molecule by measuring the
deflection of the trapping laser beams.
From that force, they deduced the
position of the bead in the trap.

By stretching the RNA molecule
slowly and measuring the work input,
the Berkeley group determined the
molecule’s free energy as a function of
the amount by which it was stretched.
Two different rates of rapid stretching
then yielded two different (extension-
dependent) work distributions that
were plugged into the nonequilibrium
work relation to estimate the free
energy as a function of extension.

Figure 2 shows the difference
between the free energies calculated
from Jarzynski’s relation and the free
energy measured in experiments con-
ducted slowly enough to approximate
them as reversible. Except for the
fastest stretching rate and the great-
est extensions, the two agree within
experimental error, confirming the
nonequilibrium work relation.

Systematic errors might account
for the discrepancies. Because of the
exponential averaging in Jarzynski’s
result, the nonequilibrium work rela-
tion strongly weights those runs for
which the work is less than the free-
energy change. Therefore, instrument
noise tends to lead to an underesti-
mate of the free energy, especially for
large extensions, since noise piles up
over the time needed to produce such
extensions.

Figure 2 does not present error

bars for the estimates based on the
nonequilibrium work relation. For the
non-Gaussian distributions involved,
conventional error analysis can be
misleading. One possible estimate,
based on the standard error of the
mean, gives relatively small errors.*

Clunky small machines

A consequence of the transient fluctu-
ation theorem is that microscopic
machines will work differently from
their macroscopic counterparts. If an
engine is made small enough so that
the work performed during a cycle is
comparable to k7T, then occasionally
and uncontrollably it will not run as
designed. Imagining a tiny car with a
tiny engine, Evans observes that the
car won'’t run straight down the inter-
state but will jump “two steps forward,
one step back.” You'll get to where you
want to go, but the ride won’t be
smooth. “The bottom line,” comments
Jarzynski, “is that we’re starting to
understand more quantitatively the
nature of thermodynamic fluctuations
at the microscopic level.”

STEVEN K. BLAU
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Probing the Nanomechanics of Cartilage
with Atomic Force Microscopy

ust a millimeter or so thick, the lay-

ers of cartilage in our knees can
withstand compressive stresses of
hundreds of kilopascals and tensile
stresses ten times greater. Cartilage
owes its remarkable resilience to the
complex behavior and arrangement of
its various molecular components.
Unfortunately, like many carefully
engineered devices, cartilage can go
wrong. Twenty-one million Americans
endure osteoarthritis, a painful
degradation of cartilage in knees and
other joints.

Candidate materials for synthetic
cartilage are assembled from molecu-
lar building blocks. Drugs operate
through molecular interactions. Treat-
ing cartilage diseases, therefore,
depends on understanding the
mechanical properties of cartilage at
the molecular level. That goal is now
one basic research step closer, thanks
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Researchers have measured the
intermolecular forces that help
cushion our joints.

to a new technique for probing the
nanomechanics of cartilage.

Seven years ago, MIT’s Alan
Grodzinsky and Mike Buschmann,
his graduate student at the time,
identified the main source of carti-
lage’s compressive strength: electro-
static repulsion between glycosamino-
glycan (GAG) molecules.! Now,
Grodzinsky, his fellow MIT professor
Christine Ortiz, and their students
have used atomic force microscopy
(AFM) to quantify, for the first time,
the nanoscale forces exerted by GAG
molecules.? Scaled up, the molecular
forces match macroscopic measure-
ments made on cartilage tissue.

Cartilage relies on three main mol-

ecules to bear loads: collagen, water,
and proteoglycan. Mechanically, carti-
lage behaves like a water-logged bath
sponge. Collagen, a protein, provides
the springy scaffold and the tensile
strength. Water offers significant
resistance to compression, especially
to high-frequency impulsive stress:
The faster cartilage is squeezed, the
harder it is to force water through the
collagen scaffold and out into the syn-
ovial fluid that surrounds the carti-
lage. But the main source of carti-
lage’s compressive strength under
equilibrium or low-frequency loading
comes from the giant, negatively
charged proteoglycan molecules that
pervade the collagen scaffold in an
aqueous gel.

The proteoglycans in cartilage are
hierarchically structured combinations
of proteins and sugars. At the lowest
structural level are sugar molecules,
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