compared to 2 TeV at Fermilab's Tevatron. In 1988, DOE officials selected a site encircling Waxahachie (near Dallas), Texas. Tim joined the new laboratory to participate in the detailed design and construction of the SSC. becoming deputy director of the conventional facilities division. Then, in 1993, following an expenditure of almost \$2 billion and after numerous scientists, engineers, and technicians had spent years of hard, successful work, Congress canceled the project, leaving those workers suddenly unemployed. Tim became an invaluable source of sympathy, counsel, and guidance for many of those who had committed their careers to bringing the SSC dream to fruition, only to see that dream suddenly vanish. The solace and the tangible assistance that Tim provided helped many of them through that traumatic experience.

Tim was extraordinarily skilled in planning the design and construction of accelerators and experimental facilities. But perhaps a still more important and, indeed, unique feature of Tim's presence on any project was his ability to relate to his colleagues and create the kind of morale and spirit that make the almost impossible seem within easy grasp.

Tim's interest and enjoyment in performing rites and services in his role as Roman Catholic priest brought joy to many and sympathy to others in time of need. Beyond the customary practice in that role, Tim could usually successfully press the appropriate authorities to waive rules too, so that he would, for example, be permitted to perform marriages not only in a church, but in a location that appealed to those people involved. Tim was available to his friends and colleagues-those of other faiths or those of no faith. All were of equal concern to Tim, if not in his formal, priestly role, then simply as a warm human being ready and able to lend his practiced ear, his sympathy, and his help. The story is told that after Tim had conducted a wedding of two friends—the groom, Roman Catholic, and the bride, Jewish-the father of the bride thanked him and told him he would make a wonderful rabbi.

Tim strongly believed that science and religion could, and should, coexist—that the one could draw strength from the other. The way he led his life was patterned after that conviction. Tim made each person who knew him feel special. Colleagues far and wide truly respected, trusted, and loved him. He was a wonderful companion in good times and bad. Those of us

who knew him will always be grateful for the gift of his friendship.

James R. Sanford Brookhaven National Laboratory Upton, New York RICH ORR Port Angelos, Washington EDWIN L. GOLDWASSER University of Illinois Urbana-Champaign

Charles William Van Atta

Charles William Van Atta, an emeritus professor of engineering physics and oceanography at the University of California, San Diego (UCSD), died on 11 February 2001 of cardiac arrest while cross-country skiing on Mount San Jacinto in California.

Chuck was born on 24 February 1934 in New London, Connecticut. In his youth, he showed an interest in aeronautics, making hand-launched gliders and rubber-band-powered model airplanes. Chuck attended the University of Michigan in Ann Arbor, earning a BS in aeronautical engineering in 1958. He received his PhD in aeronautical engineering from Caltech in 1964. His dissertation research was directed by Donald Coles and concerned an experimental investigation of turbulence in the gap between rotating cylinders, a study that determined the research direction of his career.

Chuck worked briefly in the fluid physics section of NASA's Jet Propulsion Laboratory before joining the UCSD faculty, in 1965, as an assistant professor in the newly formed department of aeronautical and mechanical engineering sciences (AMES), with a joint appointment in the graduate department of the Scripps Institution of Oceanography. Chuck spent the remainder of his career at UCSD. He was promoted to associate and full professor in 1969 and 1975, respectively, and assumed emeritus status in 1994.

In addition to laboratory experiments, Chuck made field measurements in the atmospheric boundary layer over the ocean. In 1969, he spent two weeks on the Caribbean Sea, making velocity measurements from the Scripps Institution's floating instrument platform (FLIP) near Barbados as part of the BOMEX (Barbados Ocean Mixing Experiment) boundary layer meteorology experiment. In these varied research projects, Chuck trained 17 doctoral students from Asia, Europe, and the US. Several have gone on to distinguished careers in

CHARLES WILLIAM VAN ATTA

business, government, and academia.

Chuck's insightful laboratory experiments on structure functions and spectral energy transfer in isotropic turbulence are universally recognized as pioneering contributions to advances in the statistical theory of turbulence. He established a reputation for providing experimental data that could be trusted to stand the test of time. In 1983, with his graduate students and postdoctoral colleagues, he tackled fundamental issues concerning the effects of shear and stable stratification on turbulence. The results of these experiments have been used to interpret field measurements in the atmospheric boundary layer over the ocean and direct numerical simulations of the related systems.

A measure of the esteem Chuck was held in by his colleagues is the Mini-Symposium on Turbulence and Turbulent Mixing held in his honor at the 2001 American Physical Society's Fluid Dynamics Division Meeting in San Diego, California.

Chuck was an avid outdoorsman. His hobbies included backpacking, rock climbing, biking, skiing, snorkeling, and surfing. He and his wife, Ann, traveled widely and took lengthy hiking trips in Nepal during the 1980s. With six friends, Chuck climbed Mount Kilimanjaro in 1999. He was extremely proud of his two young grandsons born of his only child. His engaging and amiable personality and keen scientific mind will be sorely missed by the fluid mechanics community.

CARL H. GIBSON
PAUL A. LIBBY
SUTANU SARKAR
University of California, San Diego
La Jolla ■