iting into an apple and finding a

maggot is unpleasant enough, but
finding half a maggot is worse. Dis-
covering one-third of a maggot would
be more distressing still: The less you
find, the more you might have eaten.
Extrapolating to the limit, an en-
counter with no maggot at all should
be the ultimate bad-apple experience.
This remorseless logic fails, however,
because the limit is singular: A very
small maggot fraction (f < 1) is qual-
itatively different from no maggot
(f = 0). Limits in physics can be sin-
gular too—indeed they usually are—
reflecting deep aspects of our scientif-
ic description of the world.

In physics, limits abound and are
fundamental in the passage between
descriptions of nature at different lev-
els. The classical world is the limit of
the quantum world when Planck’s
constant £ is inappreciable; geometri-
cal optics is the limit of wave optics
when the wavelength A is insignifi-
cant; thermodynamics is the limit of
statistical mechanics when the num-
ber of particles N is so large that 1/N
is negligible; mechanics of a slippery
fluid is the limit of mechanics of a vis-
cous fluid when the inverse Reynolds
number 1/R can be disregarded. These
limits have a common feature: They
are all singular—they must be,
because the theories they connect
involve concepts that are qualitative-
ly very different. As I explain here,
there are both reassuring and cre-
ative aspects to singular limits. And
by regarding them as a general fea-
ture of physical science, we get insight
into two related philosophical prob-
lems: how a more general theory can
reduce to a less general theory and
how higher-level phenomena can
emerge from lower-level ones.

The coherence of our physical
worldview requires the reassurance
that, singularities notwithstanding,
quantum mechanics does reduce to
classical mechanics, statistical mech-
anics does reduce to thermodynamics,
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and so on, in the appropriate limits.
We know that when calculating the
orbit of a spacecraft (and indeed
knowing that it has an orbit) we can
safely use classical mechanics, rather
than having to solve the Schrédinger
equation. An engineer designing a
bridge can rely on continuum elastic-
ity theory, without needing to know
the atomic arrangements underlying
the equation of state of the materials
used in the construction. However,
getting these reassurances from fun-
damental theory can involve subtle
and unexpected concepts.

Perhaps the simplest example is
two flashlights shining on a wall.
Their combined light is twice as bright
as when each shines separately: This
is the optical embodiment of the equa-
tion 1 + 1 = 2. But we learned from
Thomas Young almost exactly two
centuries ago that this mathematics
does not describe the intensity of
superposed light beams: To account
for wave interference, amplitudes
must be added, and the sum then
squared to give the intensity. This
involves the phases of the two waves,
+¢ say, and gives the intensity as
lexp(idp) + exp(—ip)]?= 2 + 2 cos 29,
which can take any value between 0
and 4. So, what becomes of 1 + 1 = 2?
Young himself, responding to a critic
who claimed that the wall should be
covered with interference fringes,
agreed, but pointed out that “the
fringes will demonstrably be invisible
...ahundred . .. would not cover the
point of a needle.” Underlying this
explanation is a singular limit: The
unwanted cos 2¢ does not vanish but
oscillates rapidly. If the beams make
an angle 0, the fringe spacing is A/26,
vanishing in the geometrical limit of

small A. The limit is singular because
the cosine oscillates infinitely fast as
A vanishes. Mathematically, this is an
essential singularity of a type dis-
missed as pathological to students
learning mathematics, yet here it
appears naturally in the geometrical
limit of the simplest wave pattern.

Young’s “demonstrable” invisibility
requires an additional concept, later
made precise by Augustin Jean Fres-
nel and Lord Rayleigh: The rapidly
varying cos 2¢ must be replaced by its
average value, namely zero, reflecting
the finite resolution of the detectors,
the fact that the light beam is not
monochromatic, and the rapid phase
variations in the uncoordinated light
from the two flashlights. Only then
does 1 + 1 = 2 apply—a relation thus
reinterpreted as a singular limit.

Nowadays this application of the
idea that the average of a cosine is
zero, elaborated and reincarnated, is
called decoherence. This might seem
a bombastic redescription of the com-
monplace, but the applications of
decoherence are far from trivial. Deco-
herence quantifies the uncontrolled
extraneous influences that could
upset the delicate superpositions in
quantum computers. And, as we have
learned from the work of Wojciech
Zurek and others, the same concept
governs the emergence of the classical
from the quantum world in situations
more sophisticated than Young’s,
where chaos is involved. For example,
the chaotic tumbling of Saturn’s satel-
lite Hyperion, regarded as a quantum
rotator with about 10%° quanta of
angular momentum, would, according
to an unpublished calculation by
Ronald Fox, be suppressed in a few
decades by the discrete nature of the
energy spectrum. However, nobody
expects to witness this suppression,
because Hyperion is not isolated: Just
one photon arriving from the Sun
(whose reemission enables our obser-
vations) destroys the coherence
responsible for quantization in a time
of the order of 107%° seconds, and rein-
states classicality.! Alternatively stat-
ed, decoherence suppresses the quan-
tum suppression of chaos.

Other reassurances are equally
hard to come by. For example, for-
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mally obtaining thermodynamics
from statistical mechanics involves
applying the mathematical saddle-
point method to an infinite-dimen-
sional integral. But although such
reassurances about the appropriate
application of earlier, less general the-
ories are welcome, they look back-
ward rather than forward. However,
there is a creative side to singular lim-
its: They lead to new physics. For
large N, where a central idea is sym-
metry-breaking, this creative side is
concisely expressed in Philip Ander-
son’s celebrated phrase: More is dif-
ferent.? The vast literature on critical
phenomena reflects the fact that the
large-N limit of statistical mechanics
is singular at a critical point because
there the continuum postulated in
the thermodynamic limit is never
reached, even when averaging over
distances far exceeding the spacing
between atoms. Correlations span
arbitrarily large distances, and the
critical state—the new physics—is a
fractal. The zero-viscosity limit of
fluid mechanics is singular because
of the still-mysterious phenomenon of
turbulence, whose definitive under-
standing would earn one of the Clay
Foundation’s $1 million prizes.

In quantum mechanics (and indeed
the physics of waves of all kinds), a
range of new phenomena lurk in the
borderland with classical mechanics.
High-lying energy levels display
remarkable universality: Their statis-
tics depend only on whether the cor-
responding classical orbits are regu-
lar or chaotic, and on certain global
symmetries. In the chaotic case (see
the column “Quantum Chaos and the
Bow-Stern Enigma” by Daniel Klepp-
ner, PHYSICS TODAY, August 1991,
page 9), the associated wavefunctions
resemble random functions of position
decorated by “scars” along classical
periodic orbits. (See the article “Post-
modern Quantum Mechanics,” by Eric
J. Heller and Steven Tomsovic,
PHYSICS TODAY, July 1993, page 38.)
For regular motion, the dominant fea-
ture is focusing, and the classical
paths are singular on caustics; the
caustics are decorated with striking
and characteristic interference pat-
terns (see my column “Why Are Spe-
cial Functions Special?” in PHYSICS
ToDAY, April 2001, page 11). Such
postmodern quantum effects are
emergent phenomena par excellence:
The discrete states they describe are
essentially nonclassical, but can be
unambiguously identified only for
highly excited states, that is, under
near-classical conditions.

New ideas in physics often inspire,
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ACROSS THE BOUNDARY between classically allowed and forbidden regions in a
two-dimensional chaotic system, the density of trajectories falls discontinuously to
zero. This classical limit is singular because, in the corresponding semiclassical quan-
tum wavefunctions shown here as simulations (with the classical boundary indicated
by dashed lines), (a) the probability density (color-coded from red at maxima to black
at zeros) fluctuates smoothly, and (b) the phase (color-coded by hue) varies smoothly
except at points where all colors meet (points that are themselves singularities).

or are inspired by, new ideas in math-
ematics, and singular limits are no
exception. Underlying critical phe-
nomena is the renormalization group,
which determines how systems trans-
form, or remain invariant, under
changes of scale—a fertile idea that is
essentially mathematical but whose
foundations have not been rigorously
established. The quantum-—classical
connection involves divergent infinite
series (for example, in powers of A),
and the divergence can be traced pre-
cisely to the singularity of the limit.
Some quantum phenomena involving
divergent series are nonclassical
reflection above a smooth potential
barrier, weak quantum transitions
caused by slowly varying external
forces, and the representation of spec-
tra in terms of classical periodic orbits.
Mathematicians long regarded diver-
gent series with suspicion; in 1828,
Niels Henrik Abel wrote that they “are
an invention of the devil, and it is
shameful to base on them any demon-
stration whatsoever.” But such series
are often the best (even the only) way
to calculate physical quantities, and
applied mathematicians, disregarding
Abel’s censure, have freely developed
sophisticated manipulations and reg-
ularizations of the divergences. An ele-
mentary example of a divergent series
is 1+2+3+4+...,which can be
resummed to give the value —/,; this
looks like a joke, but is the unam-
biguous result of zeta function regu-
larization, widely used in quantum
field theory. Much more violent diver-
gences arise from singular limits
associated with the integrals and dif-
ferential equations of physics, and

have been tamed using more sophis-
ticated methods. This is the domain
of mathematical asymptotics and sin-
gular perturbation theory. In the
1990s, the long overdue beginnings of
a rigorous mathematical theory were
established.

Singular limits carry a clear mes-
sage, which philosophers are begin-
ning to hear:® The physics of singular
limits is the natural philosophy of
renormalization and divergent series.
Perhaps they are recognizing that
some problems of theory reduction
can themselves be reduced to tricky
questions in mathematical asymptot-
ics—an extension of the traditional
philosophical method, of argumenta-
tion based on words. Usually, we
think of “applications” of science
going from the more general to the
more specific—physics to widgets—
but this is an application that goes the
other way: from physics to philosophy.
One wonders if it counts with those
journalists or administrators who like
to question whether our research has
applications. Probably not.
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