
APS MARCH MEETING TO BE HELD

he American Physical Society's March meeting is always its most heavily attended, with 5000 people once again expected to flock to the gathering. This year's meeting will be held at the Indiana Convention Center from 18 to 22 March. The sessions at the meeting will deal with a wide range of materials: superconductors, proteins, conjugated polymers, nanoclusters, semiconductors, multiferroics, magnetoresistive oxides, and more. The hot material of last year's meeting-magnesium diboride, which had just been discovered to superconduct at 40 K—will be the subject of 70 papers in five sessions this year.

A number of tutorials and workshops have been organized for the weekend preceding the meeting. The APS division of polymer physics will sponsor a short course on glasses and the glass transition, to run from 8 AM to 5 PM on both Saturday and Sunday,

16 and 17 March. APS will also offer eight half-day tutorials on Sunday. The morning tutorials, to be held from 8:30 AM to 12:30 PM, will cover superconducting materials, spintronics, high-resolution optical microscopy in materials systems, and methods of nonlinear dynamics in cellular biophysics. The topics of the afternoon tutorials, which will run from 1:30 to 5:30 PM, are the Coulomb blockade and single-electron tunneling, business fundamentals for physicists, the application of Beowulf clusters to computing needs, and applied magnetism and information storage technology.

Also over the weekend, the APS committee oncareers and professional development has planned a workshop on preparing students for careers in industry. The workshop will begin with a poster session on Saturday evening, 16 March, and continue Sunday with a morning program of talks. Speakers include Sheila Tobias, a consultant;

Charles Coffey of Vanderbilt University Medical Center; and Ed Esposito, formerly of Alcatel and now at the University of Texas at Dallas. The program will conclude with a lunchtime talk by Venkatesh Narayanamurti of Harvard University.

APS has planned a professional development seminar for Sunday, 17 March, from 8 AM to 1 PM. The seminar will deal with the management problems of the technical person in a leadership role. Also on Sunday, the committee on the status of women in physics (CSWP) will hold a half-day workshop from 1:30 to 6 PM in the Westin Hotel on survival skills for successful women physicists. CSWP and the committee on minorities will hold a dessert reception from 6 to 8 PM in the Westin. CSWP has also joined with the forum on industrial and applied physics to organize a networking breakfast from 7 to 9 AM on Monday, 18 March, in the Westin.

Several special events will complement the technical program during the week, starting bright and early Monday morning with the 5th annual 5K Run for Health from 6:30 to 7:30 AM. Runners should assemble at the convention center at 6:15 AM to be bussed to the run site. Later in the day, from 5:30 to 6:30 PM, in the Convention Center, APS will present 15 prizes and awards for outstanding research and service (see the report of these awards on page 66 of this issue). Immediately following the awards ceremony, also at the convention center, APS will host a welcome reception for meeting attendees. The reception will in turn be followed by an evening session devoted to policy issues, featuring Presidential Science Adviser John Marburger.

On Tuesday, 19 March, from 2-3 PM, the editors of Physical Review Letters and of Physical Review B and E will participate in a panel discussion about publication issues and will encourage a discussion with the audience. At 2:30 PM, APS will sponsor a Nobel Prize Session, featuring two of this year's physics Nobelists, Wolfgang Ketterle and Carl Wieman. From 3:30 to 4:30 PM Tuesday, CSWP will sponsor a special panel discussion in honor of the 15th anniversary of the Maria Goeppert Award. On Tuesday evening, the new forum on

graduate student affairs will host a graduate student social hour from 5:30 PM to 6:30 PM. Several APS units will sponsor receptions for their members, and various universities, laboratories, and companies will be hosting reunions from 6 to 8 PM for their alumni attending the meeting.

The popular program, "Students Lunch with the Experts," will again be held, this year from 12:30 to 2:00 PM on Wednesday, 20 March. Students can sign up for a topic of interest beginning on Monday at 1 PM at the APS registration desk.

APS will continue an exercise in public policy that proved particularly popular last year. They will have a number of computer terminals to allow meeting participants to send letters to members of Congress regarding such issues as funding and education. APS staff members will be on hand to help, and will provide sample letters on specific issues.

Meeting attendees can find out about the latest in physics-related products and services, such as laser

and optical-component instruments, test and measurement equipment, scientific software, and books, at the APS Exhibit Show. The show will be held in the convention center on Monday and Tuesday from 10 AM to 5 PM and on Wednesday from 10 AM to 4 PM.

APS will maintain an employment center at the meeting, affording the opportunity for prospective candidates and employers to meet one another. The center hours are 8 AM to 5 PM on Monday and Tuesday and 8 AM to 1 PM on Wednesday.

Sessions with Invited Speakers

Monday, 18 March

morning
DCMP: High Field Organic Superconductors/Magneto-Transport in

Cuprates. Lee, Uji, Abrahams, Boebinger, Grayson.
DPOLY: Organic and Inorganic Nanostructures in Polymers. Vaia, Wiesner, Krishnamoorti, Carroll, Windle.

DCMP: Magnetism in Reduced Dimensionality. Kawakami, Jin, Reich,

Shen, Pescia.

DCOMP: Computational Physics on the Nanoscale. Louie, Pantelides, Car, Chelikowsky.

FED: Teaching Thermal and Statistical Physics. Tobochnik, Prentis, Laws, Loverude, Gould.

FHP: Tunneling, from Alpha Particle Decay to Biology. Giaever, Onuchic, Merzbacher, Makri.

FPS/FGSA: Rethinking Graduate Education. Plapp, Rogers, Rossing. FIAP: IR Applications of Semiconductor Nano and Microstructures I. Razeghi.

DMP: Organic Electronic Materials and Devices. Kenkre.

DCMP/DMP: Superconductivity: Theory I. Chubukov.

DCMP: Superconductivity in Nanowires, Rings, and Films. Shekhter.

DMP: MgB₂ Basic Properties, Pressure Effects. Bud'ko.

GMAG/DMP: Effects of Spin-Polarized Currents. Fert.

DMP/GMAG: Magnetoresistive Oxides: Phase Separation I. Dagotto, Neumeier.

DMP: Spin-Dependent Phenomena in Semiconductors I: Spin Injection into Semiconductors. Salis.

DMP: Surface Dynamics I. Kara.

DMP/FIAP: Electronic and Transport Properties of Ultra Thin Films. Aono.

DMP: Nanoclusters, Wires, Assemblies I. Knickelbein, Kawazoe.

DMP/FIAP: Synthesis and Characterization of Carbon Nanotubes and Peapods. Zhang.

FIAP/DMP: Thermoelectric Materials and Novel Thermoelectric Phenomena I. Keppens, Yang. DBP: Biological Molecules in Solvent Free or Minimal Solvent. deVries,

Bowers, Rodgers, Williams, Jarrold.

DCP: Two-Dimensional Nonlinear Spectroscopy. Tokmakoff, Wright.

DCMP: Superconductivity in Low-Dimensional Structures. Bezryadin, Zaikin, Dikin, Fomin, Vieira.

GSNP/DFD: Single Molecule DNA and Complex Fluid Dynamics. Chu, Morse, Larson, Shaqfeh, Austin.

DCMP: Magnetic Rings. Bland, Metlushko, Chen, Lopez-Diaz.

DCMP: Dynamic Granular Systems: Flows and Forces. Menon, Ben-Naim, Kudrolli, Levine, Jaeger.

DCMP: Short-Range Correlations in Colossal Magnetoresistance Manganites. Nelson, Kiryukhin, Adams, Campbell, Larochelle.

DCMP: Strongly Anisotropic Kondo Systems. Costi, Goremychkin, Andraka, Bernal, Rainford.

FIAP: NEMS to MEMS. Gaitan, Musgrave, Brown, Bashir, Stone.

FIAP: IR Applications of Semiconductor Nano and Microstructures II.

DMP/DCMP: Piezoelectric Multiferroics. Cross, Wakimoto.

DCMP/DMP: Tunneling and Spin Injection in Oxide Superconductors.

DMP: MgB_2 Synthesis and Doping. Lee, Tajima.

GMAG: Low-Dimensional Spin Systems. Jungwirth.

GMAG: Antiferromagnetism I: Pyrochlores and Frustrated Systems. Mandrus.

DCMP: Integer Quantum Hall Effect. Haug.

DMP: Spin-Dependent Phenomena in Semiconductors II. Crowell.

DCMP: Heavy Fermions I. Dordevic.

DMP: Nanowires at Surfaces. Erlebacher, Himpsel. DMP: Electronic States at Surfaces. Hosono.

DMP: Nanoclusters, Wires, Assemblies II. Bowen.

DMP/FIAP: Synthesis and Characterization of Carbon Nanotubes. Gimzewski, Campbell.

DMP/FIAP: Thermoelectric Materials and Novel Thermoelectric Phe $nomena\ II.\ Venkata subramanian.$

DAMOP/DCMP: Quantum Spin Liquids and Bose-Einstein Condensa $tion.\ Lhuillier.$

DBP: The Physics of Single Molecules: Nanopore Approaches Symposium. Deamer, Kasianowicz, Meller, Akeson, Golovchenko.

DBP: Biomolecules in Minimal Solvent Environments. Gutowski.

DCP: Nonlinear Computing and Polarization Spectroscopy. Apkarian, Vaccaro.

afternoon

DCMP: Spectroscopic Studies: Particle-Hole Pair Excitation in Cuprates. Kim, Zhang, Rubhausen, Fink, Hasan.

DBP/GSNP: Statistical Physics/Biological Physics Prize Symposium. Bustamante, Barkai, Sengupta, Li.

DCMP: Frustrated Magnets in High Magnetic Fields. Cabra, Zhitomirsky, Haas, Tennant, Schulenburg.

COM: The New Face of Physics. Czujko, May III, Childs, Roach III, Ponce. DPOLY: Polyelectrolytes. Pincus, Muthukumar, Hoagland, Colby, Dobrynin.

DMP: McGroddy/Adler Prize Session. Bethune, Avouris, Van de Walle,

FIAP/FED: Educating Physicists for Industrial Careers: Bachelor's to Ph.D. Schwartz, Hammer, Russell, Howes.

FIAP/GIMS: Optical Spectroscopy for Industrial Applications. Aspnes,

DCMP: Superconducting Qubits I. Lehnert.

DCMP: Ferromagnetic Superconductors. Santamaria.

DMP: MgB₂ Phonons, Electron-Phonon Coupling. Osborn, Yildirim.

GMAG/DMP: Patterned Magnetic Films. Albrecht.

DMP/GMAG: Magnetoresistive Oxides: Polarons. Goodenough.

DMP: Diffraction Methods. Robinson, Fenter.

DMP/FIAP: Quantum-Sized Effects in Metallic Overlayers. *Miller*: FIAP/DMP: Understanding Molecular and Nano Electronics I. *Sankey*.

DMP: Search for Next-Generation Transparent Conducting Oxides. Kilic, Zhang, Orita, Mason, Kawai.

bbreviations preceding each entry denote the sponsoring Adivision (d), committee (c), forum (f), or topical group (t):

COM: Minorities in Physics (c)

CSWP: Status of Women in Physics (c)

DAMOP: Atomic, Molecular, and Optical (d)

DBP: Biological Physics (d)

DCMP: Condensed Matter Physics (d)

DCOMP: Computational Physics (d)

DCP: Chemical Physics (d)

DFD: Fluid Dynamics (d) DMP: Materials Physics (d) DPOLY: Polymer Physics (d)

FED: Education (f)

FGSA: Graduate Student Affairs (f) FHP: History of Physics (f)

FIAP: Industrial and Applied Physics (f)

FIP: International Physics (f) FPS: Physics and Society (f)

GIMS: Instrument and Measurement Science (t)

GMAG: Magnetism and Its Applications (t)

GSCCM: Shock Compression of Condensed Matter (t)

GSNP: Statistical and Nonlinear Physics (t)

GSNP: Coarsening in Pattern-Forming Systems. Dennin, Harrison. $DCP: Molecular\ Dynamics\ From\ Nonlinear\ Spectroscopy.\ Schmuttenmaer,$

Tuesday, 19 March

morning

DCMP: Superconductivity in MgB₉. Andersen, Mazin, Bouquet, Iavarone, Marsiglio.

DPOLY: Polymer Physics Prize Symposium. Witten, Marko, Ajdari, Robbins, Cates.

DCOMP: Computational Magnetohydrodynamics. Peterkin, Robinson, Chittenden, Powell, Linde.

DCMP: The Physics of Very High Dielectric Constant Materials. Subramanian, Ramirez, Homes, Vanderbilt, Samara.

FPS/FED: Communicating with Congress. Stephan, Lubell, a representative of Senator Evan Bayh, Gubser, Bienenstock.

DCMP/DAMOP: Quantum Computation/Phonons in Quantum Dots. Grover, Farhi, Devreese, Heitz, Skolnick.

FIAP/DBP: Bioimaging: From the Brain to the Genome. Haacke, Feld, Sohn, Eppell.

FIAP/DCP: Progress in Sensors and Catalysis. Logsdon, Pitts.

DMP: Organic Electronic Materials and Devices III. Katz.

DCMP: Pairing State Symmetry of Superconductors. Agterberg.

GMAG/DMP: Spin Polarization of Ferromagnets. Xing, Ji.

DMP/GMAG: Magnetoresistive Oxides: Charge and Orbital Ordering I. Khomskii, Nagaosa.

DCMP: Bilayer Electron Transport. Pellegrini.

DMP: Spin-Dependent Phenomena in Semiconductors IV: Spin Transport in Semiconductors. Vignale.

DMP: Surface Dynamics II. Ocko.

DMP/FIAP: Optical Spectroscopy of Carbon Nanotubes. Rao.

DMP/GMAG: Disorder Controlled Interfaces in Condensed Matter. Pokrovsky, Shibauchi.

DBP: Nucleic Acids: Electronic. Mattanjah.

DBP: Actin Cytoskeleton and Cell Locomotion. Mogilner, Theriot.

DCP: Metal Nanoclusters: Physical Properties and Preparation. Binns, Harbich, Landman,

DCP: Nonlinear Spectroscopy and Molecular Choreography. Gordon, Corkum.

DCMP: Superconductivity/Ruthenates. Khalifah, MacFarlane, Rice, Nakatsuji, Liu.

DCMP: Buckley Prize Session. Jain, Willett, Read, Pan, Bonesteel.

DCMP: Electron Transport in Metallic Carbon Nanotubes. Dekker, Paalanen, Schönenberger, Bouchiat, Woodside.

DCMP: Dynamics of Granular Media. Kurchan, Ertas, Grest, Clement. DCMP: Quantum States and Nanostructure Stability. Bauer, Chou, Tsong, Chen. Tringides.

DCMP/DAMOP: Quantum Computing: Scalable Atomic Physics Approaches. Steane, King, Jaksch, Lukin, Reichel.

FIAP/FPS: Climate Change Mitigation. Socolow, Stringer, Flannery,

FIAP: Quantum Cascade Lasers and Applications. Faist, Colombelli. DCMP/DMP: High-T_c Superconductors: Pseudogap in Cuprates. Raffy, Abrikosov.

GMAG: Exchange Biasing: Role of AF and Theory. Schulthess, Scholl. DMP/GMAG: Magnetoresistive Oxides: Spin and Charge Excitations.

Averitt. GMAG/DMP: Nonlinear Magnetization Processes-Hysteresis and Barkhausen Noise. Jiang.

DMP: Group IV Epitaxy. Berbezier, Cahill.

FIAP/DMP: Understanding Molecular and Nano Electronics II. Williams. DMP/FIAP: Electronic and Transport Properties of Carbon Nanotubes. Lemay

GIMS: Emerging Instrumentation for Commerce and Space Research. Elings, Cates, Lipa,

DBP: Enzymatic and Transcriptional Networks. Shraiman, Goulian, Hwa, Elowitz, Vilar.

DBP: Dynamical Modeling: Molecular through Behavioral. Fieseler.

DCP: Metal Nanoclusters: Chemistry I. Heiz, Goodman, Anderson.

DCP: Nonlinear Spectroscopy, Single Molecules, and Molecular Control. Seideman, Leone.

DCMP: Exotic Ordering in Underdoped Cuprates/Spin-Charge Separation. Mook, Bourges, Kaminski, Bonn, Fisher.

DPOLY: John H. Dillon Medal Symposium. Bunning.

APS: Nobel Prize Session. Wieman, Ketterle.

DCMP: Vanadate Ladders: Charge and Spin Excitation. Grenier, Blumberg, Rõõm, Trebst, Ohwada.

FIP: Science for Developing Countries: Links to US and Europe. Perrolle, Zambrano, Gaines, Healey, Moten.

DCMP: Growth and Nanostructure Morphology on Modified Surfaces. Blakely, Pelz, Bartelt, Schmid, Kellogg.

FIAP: Progress in Catalysis, Fuel Cells, and Chemical Sensors. Gorte, Ying, Miura, Norskov, Lauterbach.

FIAP/GIMS: MEMS/NEMS Science, Technology, Applications, and Mea-

surements. Evoy, Sullivan.

DMP: Excited-State Electron Structure I. Sawatzky, Shirley.

DCMP: Josephson Junction Arrays and XY Models. Stroud.

DMP: MgB₂: Two-Band Superconductivity. Schmidt. GMAG/DMP: Magnetic Clusters and Arrays. Majetich.

DCMP: FQHE I: Composite Fermions. Engel.

DMP: Spin-Dependent Phenomena in Semiconductors VI: Electron and Nuclear Spin Manipulations in Nanoscale Geometries. Tarucha.

DMP: Semiconductor Epitaxial Growth. Mirecki Millunchick, Davis.

DMP/FIAP: Transport Through Nanowires and Nanojunctions II. Agrait, Hou

DMP/FIAP: Carbon Nanotube Electronic Properties and Devices. Andriotis. GSNP: Jamming: From Glasses to Granular Media. Liu.

DBP/DPOLY: Rheological Properties of Bipolymer Networks. MacKintosh,

Bourdieu, Schmidt, Janmey, Tang. DCP: Metal Nanoclusters: Chemistry II. Nakajima, Murakami, Kondow. DCP/DBP: Protein Dynamics: Ion Channels and Protein-Ligand Interactions. Voth, McCammon, Isacoff.

Wednesday, 20 March

morning

DCMP: Superconductivity at Mesoscopic Scales/Electron-Phonon Interactions in the Cuprates. Kes, Moshchalkov, Prober, Shen, McQueeney.
DPOLY: Interactions between Cells and Organic Materials. Griffith, Mrksich, Composto, Plant, Koberstein.

DCMP: Spin Effects in Light-Emitting Polymer Diodes. Wohlgenannt, Friend, Taliani, Forrest, Mazumdar.

DCMP: Bound and Unbound Spinons in Quantum Spin Chains. Chen, Muller, Uhrig, Zaliznyak, Kenzelmann.

GSNP: Complex Real-World Networks. West, Amaral, Barabási, Havlin. DCMP/DAMOP: Atomic Dynamics in Optical Lattices. Helmerson, Raizen, Jessen, Pfau.

FIAP/FPS: Industrial Physics Success Stories. Ashby, Schwartz, Clark, Keck, Graham.

FIAP/DCP: Progress in Sensors and Fuel Cells. Barsan, Zawodzinski.

DPOLY/GSNP: Nanocomposites and Filled Elastomers. Ratna.

DCMP: Classical and Quantum Monte Carlo Studies. Williamson.

DMP: Stripes and Lattice Structure. Moreo.

GMAG/DMP: Magnetic Tunnel Junctions. Cebollada.

DMP/GMAG: Magnetoresistive Oxides: Phase Separation II. Ogale, Berger.

DCMP: FQHE Edges/Phonon Scattering in Magnetic Fields. Yang, Zudov. DMP: Spin-Dependent Phenomena in Semiconductors VII: Inhomogeneous and Dynamical Magnetism in Ferromagnetic Semiconductors. MacDonald.

DMP: Nonlinear Optical Interactions: Ultrafast Spectroscopy. Heinz, Downer.

DMP/FIAP: Transport Through Nanowires and Nanojunctions III. Yeom. DMP: Nanoclusters, Wires, Assemblies III. El-Sayed, Nayak.

DMP/FIAP: Thermal and Magnetic Properties of Carbon Nanotubes. McEuen.

DBP: Structural and Functional Properties of Protein Folding Intermediates. Hoff, Yeh.

FIAP/DBP: Physics of Bioimaging and Microscopy. Durduran, Tang. DCP: Metal Nanoclusters: Spectroscopy and Structure. Duncan, Parks.

DCP/DBP: Protein Dynamics: Quantum Dynamics and Transport. Yang, Onuchic.

DCMP: Isakson Prize: Spectroscopy in Strongly Correlated Electron System/Underdoped Cuprates. Allen, Timusk, Ong, Singley, Bontemps

FIAP: Pake Prize Session: The Future of Information Technology. Horn, Clark, Rudolph, Sussman. DCMP/DAMOP: Bose-Einstein Condensation and Maria Goeppert-Mayer

Award. Jin, Chapman, Feder, Aspect, Cirac DCMP: Random Lasing in Disordered Media and Pi-Conjugated Polymers.

Cao, Polson, Genack, Soukoulis. GSNP/DFD: The Physics of Thermal Convection. Niemela, Lohse, Daya,

Sano, Verzicco.

DCMP: Non-Fermi-Liquid Behavior Near Quantum Critical Points. Mackenzie, Aeppli, Ĉoleman, Si, Steglich.

DMP: Epitaxial Oxides on Semiconductors. Ramdani, Schlom, Ohtomo, Locquet, Chisholm.

FIAP: Terahertz Technologies for Sensing and Communication. Mittleman.

DMP/DCMP: Ferromagnetic Multiferroics. Venus, Tsuchiya.

DCMP: STM Spectropscopy of Oxide Superconductors. Lang, Yazdani. GMAG/DMP: Exchange-Biasing: New Materials and Structures. Hellwig, Krivorotov.

DMP/GMAG: Magnetoresistive Oxide: Magnetic Oxides. Lumsden. DCMP: GaN, GaP, and Related Materials. Citrin.

DMP: Spectroscopy and Materials Modification. Mazur, Tanimura.

DMP/FIAP: Transport in Low-Dimensional Superconducting and Magnetic Systems. Naaman.

DMP: Nanoclusters, Wires, Assembles IV. Yang.

DMP/FIAP: Mechanical Properties of Nanotubes and Their Composites.

GSNP/DBP: Noise and Stochastic Resonance. Hänggi.

DBP: Single Molecule Imaging. Nie, Beltram.

DCP/DBP: Protein Dynamics: Longtime Dynamics. Freed, Palmer.

DCMP: Superconductivity Near Ferromagnetic Quantum Criticality. Bedell, Roussev, Pfleiderer, Huxley, Monthoux.

DPOLY/DCMP: Heterogeneities Near the Glass Transition. Sciortino, Long, Spiess, Kivelson, Richert.

DCMP: Onsager Prize Symposium/2D Non-Fermi Liquids. Larkin, Tonomura, Kane, Sachdev, Wen.

APS/GSCCM: Apker Award Symposium/Shock Compression of Condensed Matter. Todd, Wagner.

CSWP: International Union of Pure and Applied Physics Report. Urry, Hartline, Czujko.

GMAG: Ferromagnetic Semiconductors. van Schilfgaarde, Chun, Kepa, Farrow, Tabata.

FIAP/GIMS: Vacuum Ultraviolet Optical Science and Measurements. Cardona, Edwards, Burnett, Hinsberg, Rothschild.

DMP/DCMP: Thin Film Processing. Pan.

DCMP/DMP: High-T_c Superconductors: Optical Properties I. Bernhard. FHP: Synchrotron Radiation: From Stepchild to Star. Petroff, Blume, Harrison, Moncton.
GMAG/DMP: Magnetic Domains in Nanostructures. Wiesendanger.

DMP/GMAG: Magnetoresistive Oxides: Cobaltates and Ruthenates. *Ikeda*.

DMP: Group III-Nitride Devices and Structures. Mohney.

DMP/DCMP: Structural Transitions at Surfaces. Frenken.

DMP/FIAP: Multifunctional Nanotube Composites. Baughman.

DMP: Stress-Driven Processes. Karma, Sharon.

DBP: Micro-Nanofabrication in Biological Physics. Saleh. DBP: Dynamics of Cardiac Fibrillation. Gray, Fenton.

DCP/DBP: Protein Dynamics: Folding. Brooks III, Haran.

GIMS: Keithley Award and NSF Perspective on Instrumentation/Measurements. Soulen, Tessema.

Thursday, 21 March

morning

DCMP: Vortex Matter in Type II Superconductors. Park, Zeldov, Teitel, Andrei, Bhattacharya.

DCMP/DPOLY: Dynamics and Thermodynamics of the Glass Transition. Yu, Granato, Poole, Angell, Sastry.

DCOMP: Complex Networks: Characterization and Applications. Stanley, Albert, Newman, Vespignani, Oltvai.

DCMP: Electronic Structure of Plutonium: Correlation Effects. Joyce,

Havela, Tobin, Eriksson, Savrasov. DPOLY: Photonic Properties of Organic Systems. Braun, Pine, Thomas,

Asher, Turberfield. FIAP/GMAG: Novel Magnetic Technologies. Zhu, Ginder, Pelrine,

O'Handley. GIMS/FIAP: Instrumentation and Measurements for the Semiconductor

Industry. Shaffner, Schroder.

DCMP/DMP: High-T_c Superconductors Photoemission I. Johnson.

DCMP: Superconducting Devices. Nori.

DMP/GMAG: Magnetoresistive Oxides: Structure-Property Relationships. Rosseinsky.

FIAP/DMP: Defects in Electronic Materials and Devices I. Rashkeev.

DMP: Group III-Nitrides Dislocations and Growth. Hsu.

GIMS: Synchrotron-Based Instruments and Measurements. Oosterhuis. DMP: Organics and Biopolymers at Surfaces. Tromp, Belcher.

FIAP/DMP: Nanostructured Materials for Enhanced Mechanical and Tribological Properties. Qi.

DMP/FIAP: Aligned Nanotube Growth and Field-Emission Properties. Meyyappan.

DBP: Physics of Protein Folding. Clementi, Banavar, Plaxco, Cieplak.

DCP: Surface Science. Feibelman.

DCP/DBP: Protein Dynamics: Photo-Induced Dynamics. Fleming, Moffat, Martinez

DCMP: CeMIn₅ Heavy Fermion Superconductors and Raman Scattering through a Quantum Critical Point. Sarrao, Maple, Kitaoka, Freericks, Hackl.

DMP: Silicon Carbide-Defects and Processing. Stahlbush, Chung.

DCMP: Spin and Pseudospin in Quantum Hall Systems. Barrett, Sinova, Green, Smet, De Poortere.

DMP: Electron Fractionalization in Strongly Correlated Systems. Kivelson.

DPOLY: Simulations in Polymer Physics. Escobedo, Sides, Mueller, Bedrov,Drolet.

DCMP: Spin in Nanostructures. Goldhaber-Gordon, Cobden, Bayer, Usaj, Westervelt.

FIAP: Frontiers in the Physics of Wireless Communication. Moustakas, Stoytchev, Rebeiz, Ren, Smith.

DMP/DCMP: Dynamics in Multiferroics. Zhu.

DMP: Organic Electronic Materials and Devices. Spano.

DMP: Excited-State Electronic Structure II. Jönsson.

DCMP/DMP: Spectroscopy of Oxide Superconductors. Lake.

GMAG/DMP: Giant Magnetoresistance. van Wees.

DMP/GMAG: Magnetoresistive Oxides: Charge and Orbital Ordering II. Raveau.

FIAP/DMP: Defects in Electronic Materials and Devices. Northrup.

GIMS: Synchrotron-Based Measurement and Science. Simmons.

DCMP: Photoluminescence and Optical Properties of Nanomaterials. Akiyama.

DMP/FIAP: Carbon Nanotubes: Chemical Functionalization and Properties. Gülseren.

DMP: Stress-Driven Processes: Heteroepitaxy. Voorhees, Floro.

DCP: Effects of Morphology on Conjugated Polymer Electronic Properties. Rothberg, Bardeen, Samuel.

DBP: Protein Aggregation. Ionescu-Zanetti, Kulkarni, Teplow, Orme.

DCP: Tribology of Chemically Modified Interfaces. Israelachvili, Persson, Gellman.

DCP: Vibronic Chemistry in the Gas Phase of Multiple Potential-Energy Surfaces. Butler, Haas.

afternoon

DCMP: Liquid Crystal States/ 3He in Aerogel. Pindak, Cady, Selinger, Osheroff, Halperin.

DCMP: Impurities in Correlated Electron Systems/Simulations in Strongly Correlated Systems. Morr, Ingersent, Sandvik, Todo, Batrouni.

DCMP: Coulomb Drag in Bilayers. Lok, Klesse, Kellogg, Kim, Demler. GSNP: Nonlinear Dynamics of Mixing. Voth.

DCMP: Atomic-Scale Electron Microscopy. Batson, Voyles, Kabius, Browning, Nellist.

GMAG: Nanomagnets and High-Spin Molecules. Garanin, Sarachik, Wernsdorfer, Hendrickson, Dalal.

FIAP/GSNP: Coping with Complexity. Schreckenberg, Derman, Suh, Verkhivker, Brown.

DMP: Organic Electronic Materials and Devices. Vardeny.

DMP: Excited State Electronic Structure. Schmidt.

DCMP/DMP: High- T_c Superconductors: Photoemission II. Golden.

DMP: MgB₀: Microwave Properties, Thin Films, Wires. Sridhar.

DMP: Group II-IV Semiconductors. Hofmann.

FIAP/DMP: Physics of the Silicon Bond in Electronic Materials. Nogami, Christiansen.

DMP/FIAP: Carbon Nanotubes: Gas Adsorption and Transport. Johnson, Migone.

DMP: Stress-Driven Processes: Friction. Carpick, Putterman.

DCP: Improvements in Conjugated Polymer Device Design and Understanding. Malliaras, Epstein, Silva.

DBP: Proton Transfer and Electrostatic Interaction in Proteins. Gunner, Rousseau, Ormos, Xie.

DBP: Dynamics of Evolution/Neurobiological Physics. Erzan.

DCP: Physics of Chemically Modified Semiconductor Surfaces I. Doren. DCP: Vibronic Chemistry: Vibrational Influences on Electron Transfer. Spears, McKoy, Schwartz.

Friday, 22 March

GIMS: Spectroscopy at High Magnetic Fields. Brooks, Sigmund.

GMAG/DMP: Magnetization Dynamics and Excitations. Choi.

DCMP: Electronic Liquid Crystal Phases. Eisenstein, Fertig, Lopatnikova, Oganesyan, Wexler.

DCMP: Localization in Solids: Density Matrix and Wannier Functions. Souza, Marzari, Goedecker, Schuetz, Koch.

DCMP: Applications of Ultrahigh Sensitivity NMR. Ciobanu, Webb, Marohn, Smith, Hammel. GMAG/DCMP: Magnetic Interactions and Low-Lying Excitations in Man-

ganites. Perring, Golosov, Kaplan, Fernandez-Baca, Soh. FIAP: Wide Bandgap Semiconductor Device Applications. Ghosh, Eliashevich, Nemanich, Fedison.

DMP/DCMP: Theory and Modeling of Multiferroics. Hill.

DMP/FIAP: Transport through Nanowires and Nanojunctions I. Guo. GIMS/DCP: New Techniques, Applications, and Instruments in X-Ray Absorption Spectroscopy I. Rehr, Stöhr.

DMP: MgB₂: Microstructure and Vortex Behavior. Zhu, Kogan.

DMP: Surface Structure and Dynamics I. Salmeron.

DCP: Theoretical Advances in the Electronic Structure of Conjugated Polymers. Yaron, Bittner.

DCP: Physics of Chemically Modified Semiconductor Surfaces II. Shen, Guyot-Sionnest.

DCP: Vibronic Chemistry at Surfaces. Beck, Kroes.

GIMS/DCP: New Techniques, Applications, and Instruments in X-Ray Absorption Spectroscopy II. Falcone, Rose-Petruck, Alivisatos, Chen.

DMP: Superconducting and Magnetic Boron and Other Compounds. Suderow.

DMP: Ice: Surface Structure and Dynamics II. Haymet.

DCP: Advances in Conjugated Polymer Materials Design and Understanding. Jenekhe, Galvin, Vanden Bout.

DBP: Structure and Dynamics of Biomolecular Materials. Safinya, Smith. DCP: Electron Transmission Through Chemically Modified Interfaces. Lewis, Waldeck.

DCP: Vibronic Chemistry: Spectroscopy of Clusters. Scoles, von Helden,