and David Peckham. Day, chief technology officer and founder of New Focus Inc in San Jose, California, was honored for his "pioneering work on the development, production, and widespread commercial deployment of tunable external cavity diode lasers." Doerr, a distinguished member of the technical staff at Bell Laboratories, Lucent Technologies, was recognized for "groundbreaking research on photonic integrated circuits and its impact on the telecommunications industry." And Peckham, a consulting member of the technical staff at OFS Optics, in Norcross, Georgia, was cited for his "contributions to the design of dispersion compensating fibers for terrestrial and submarine optical transmission systems, which enable higher capacity and lower cost undersea networks."

APS Announces Award Recipients

Over the course of several months, the American Physical Society has recognized a number of individuals for their contributions to physics.

The recipient of the Will Allis Prize was **Alan Garscadden**, chief scientist of the propulsion directorate at the Air Force Research Laboratory, Wright-Patterson Air Force Base, in Ohio. He was recognized for his "distinguished career in gaseous electronics, marked by a sustained creativity in linking fundamental processes to the macroscopic properties of gas discharges and plasmas, and for his dedicated role as an advocate for the field of gaseous electronics."

Gerald Gabrielse, chair of Harvard University's physics department, received the society's Davisson—Germer Prize for his "pioneering work in trapping, cooling, and precision measurements of the properties of matter and antimatter in ion traps."

The Fluid Dynamics Prize went to **Gary Leal** for his "extensive use of a blend of modern analysis, innovative numerical computation, and experiments to elucidate phenomena in classical and polymer fluid dynamics." He is a professor of chemical engineering and materials at the University of California, Santa Barbara.

APS presented its James Clerk Maxwell Prize to **Edward A. Frieman** in honor of his "contributions to the theory of magnetically confined plasmas, including fundamental work on the formulation of the MHD [magnetohydrodynamic] energy principle and on the foundations of linear and nonlinear gyrokinetic theory essential

to the analysis of microinstabilities and transport." Frieman is director emeritus at the Scripps Institution of Oceanography in La Jolla, California, and senior vice-president of science and technology at Science Applications International Corp in San Diego.

David P. Landau, Distinguished Research Professor of Physics and director of the Center for Simulational Physics at the University of Georgia at Athens, was this year's recipient of the Aneesur Rahman Prize for Computational Physics. He was cited for the "development of accurate Monte Carlo sampling and renormalization group techniques, the study of the kinetics of aggregation and gelation in polymer systems, and for numerous contributions to the development and application of molecular dynamics and kinetic Monte Carlo methods."

Stephen E. Harris garnered the Arthur L. Schawlow Prize for his "outstanding contributions to fundamental and applied research into laser sources, nonlinear optics, extreme ultraviolet laser sources, and laser physics, including electromagnetically induced transparency and its application to lasing without inversion and to nonlinear optics at maximal coherence." Harris is a professor of electrical engineering and applied physics at Stanford University.

APS bestowed the Otto LaPorte Award on **Andrea Prosperetti** for his "breakthroughs in the theory of multiphase flows, the dynamics of bubble oscillations, underwater sound, and free-surface flows and for providing elegant explanations of paradoxical phenomena in these fields." Prosperetti is the Charles A. Miller Jr Distinguished Professor of Mechanical Engineering at Johns Hopkins University.

Ramon Lopez, C. Sharp Cook Distinguished Professor of Physics at the University of Texas at El Paso, received the Nicholson Medal for Humanitarian Service. APS honored Lopez for his "accomplishments in improving the quality of science education for all Americans, . . . for contributions as founder of the Teacher–Scientist Alliance Institutes which introduced K–12 students to the excitement of scientific discovery, . . . [and] for increasing participation of underrepresented minorities in physics."

The Award for Excellence in Plasma Physics Research was shared by Troy Carter, Scott Hsu, Hantao Ji, and Masaaki Yamada for their "experimental investigation of driven magnetic reconnection in a laboratory plasma. In this work, careful diagnostic studies of the current sheet struc-

ture, dynamics and associated wave activity provide a comprehensive picture of the reconnection process." Carter is an assistant professor of physics at UCLA. Hsu is a Frederick Reines Fellow in Experimental Sciences at Los Alamos National Laboratory. Both Ji and Yamada work at the Princeton Plasma Physics Laboratory: Ji is a research physicist and Yamada is a Distinguished Laboratory Research Fellow.

The first Katherine E. Weimer Award, given to recognize achievements in plasma physics research by a woman in the early years of her career, went to **Yu Lin**, associate professor of physics at Auburn University. She was recognized for her "outstanding theoretical contributions in the nonlinear dynamics and structures of plasma boundary layers associated with magnetic reconnection and the solar wind–magnetosphere interaction."

The recipient of the Andreas Acrivos Dissertation Award was **Wade Schoppa**, senior research engineer at Shell Global Solutions in Houston, Texas. He was recognized for his "studies on the generation of coherent structures in near-wall turbulence." His thesis adviser was Fazle Hussain at the University of Houston.

The Outstanding Doctoral Thesis Research in Beam Physics Award went to Boris Podobedov, associate physicist at the National Synchrotron Light Source at Brookhaven National Laboratory. He was recognized for an "experimental study of the microwave instability in the Stanford Linear Collider damping rings using a streak camera to correlate each event to the radio frequency. The development of this sophisticated technique provides a powerful tool for the study of nonlinear instabilities above threshold." Podobedov's thesis work was completed under the guidance of Robert Siemann of SLAC.

Nadia Lapusta received the Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics for her "work on an innovative computational algorithm to simulate sequences of earthquake instabilities spanning more than ten orders of magnitude in time with physical representations of friction and rigorous continuum elastodynamics, leading to elucidation of earthquake nucleation, seismic radiation, and small-event clustering processes." She received her doctorate under James Rice at Harvard and is now a postdoctoral fellow in the division of engineering and applied sciences at Harvard.

The Marshall N. Rosenbluth Outstanding Doctoral Thesis Award, formerly known as the Oustanding Doctoral Thesis in Plasma Physics Award, went to **Mayya Tokman** for the "development of exponential propagation methods for 3-D MHD simulations and for their application to the solar corona, giving new understanding of observed features of coronal mass ejections." She is a visiting assistant professor in the mathematics department at the University of California, Berkeley. Her advisers were Paul Bellan and Daniel Meiron at Caltech.

Brian DeMarco, a postdoctoral research fellow at NIST in Boulder, Colorado, received the Atomic, Molecular or Optical Physics Outstanding Doctoral Thesis Award. The citation for his award was unavailable at press time.

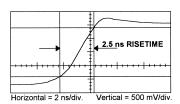
Netherlands Science Prize Bestowed

The Netherlands Organisation for Scientific Research (NWO) presented its NWO/Spinoza Award for 2002 in August to four Dutch research scientists. This annual award is the most prestigious one given in the Netherlands for scientific achievement.

One of the winners, Ad Lagendijk, is a professor of physics in the MESA+ Institute at the University of Twente in the Netherlands. A member of the complex photonic systems research group at the institute. Lagendiik conducts work "at the interface between optics and solid-state physics," according to the NWO. His research involves study of how light beams travel through materials, especially those (such as paint) that make the propagation of light waves very difficult. In 1990, while he was a professor of physics at the University of Amsterdam, he and his group discovered the "Amsterdam effect," in which paint particles reflect light back and forth so often that they temporarily capture and delay the light.

Lagendijk received both a small statue of 17th-century philosopher Benedictus de Spinoza and a cash prize of €1.5 million (about \$1.5 million), which he can spend on the research of his choice.

OSA Elects New Vice President


The Optical Society of America has elected Susan Houde-Walter, professor of optics at the University of

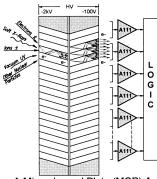
CHARGE SENSITIVE PREAMPLIFIERS

If you are using Solid State Detectors, Proportional Counters, Photodiodes, PM Tubes, CEMs or MCPs and want the best performance, try an AMPTEK CHARGE SENSITIVE PREAMPLIFIER

STATE-OF-THE-ART A250

A 2 5 0

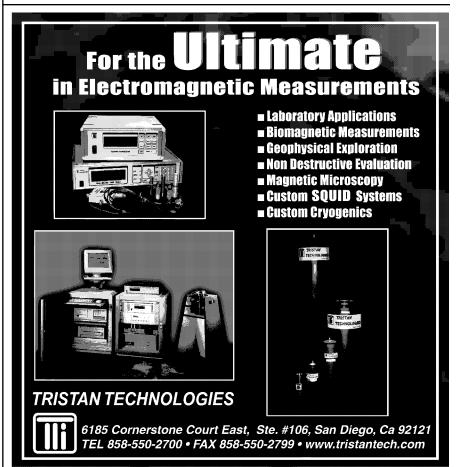
External FET FET can be cooled


Noise: <100 e RMS (Room Temp.) <20 e RMS (Cooled FET)

Gain-Bandwidth f₇>1.5 GHz Power: 19 mW typical Slew rate: >475 V/μs **A**PPLICATIONS

- Aerospace
- Portable Instrumentation
- **Nuclear Plant Monitoring**
- Imaging
- Research Experiments
- Medical & Nuclear Electronics
- Electro-Optical Systems

THE INDUSTRY STANDARD



A Microchannel Plate (MCP) Array Connected to Multiple A111s

Visit us now www.amptek.com

Circle number 36 on Reader Service Card

