
Dutch mathematician
Diederik Johannes

Korteweg (1848–1941), pic-
tured in figure 1, is best
known for the 1895 paper he
wrote with his student Gus-
tav De Vries. That paper, on
the propagation of soliton
waves in channels, has, in
recent decades, been widely
recognized as a ground-
breaking work.1 Korteweg
also studied the stress—
now called the Korteweg
stress—resulting from density gradients at an interface
between two fluids.2 Korteweg’s contributions to the ther-
modynamics of phase transitions and criticality in fluid
mixtures are far less known. They include honing the tools
of differential geometry to characterize phase separation
and criticality of fluid mixtures, developing a method of
deformation of surfaces, and performing the first detailed
analysis of the phase behavior of a special case of the van
der Waals equation for binary fluid mixtures.3

Korteweg was born and raised in the southern Dutch
province of Brabant. Fascinated by mathematics, he en-
tered the Polytechnical School at Delft, but the engineering
courses quickly discouraged him. He left, and took mathe-
matics and mechanics courses that qualified him to teach.
While a high-school teacher, he studied for the state exam
in Latin and Greek, a requirement for access to a university
education. He also published his first papers and corre-
sponded with Johannes Diderik van der Waals (1837–1923)
on the volume excluded by a collection of hard spheres. 

After passing the university admission exam in 1876,
Korteweg studied mathematics at the University of Utrecht
for a year, and then entered the newly founded University
of Amsterdam. His ascent there was meteoric. He defended
his doctoral thesis on the propagation of waves in elastic
tubes in 1878. His was the first doctorate granted by the
young university, and physics professor van der Waals be-
stowed the degree. In September 1881, Korteweg assumed
a professorship of mathematics with the inaugural address,
“Mathematics as an Auxiliary Discipline.” He lived by his
conviction that mathematics plays an important role in sci-

ence, as proved by his work
in thermodynamics, kinetic
theory, and hydrodynamics.
From 1900 to 1920, he edited
volumes 11–15 of the col-
lected papers of Christiaan
Huygens. Korteweg was the
thesis adviser of L. Egbertus
Brouwer, who became fa-
mous for his work in topology
and on the foundations of
mathematics,4 and to whom
Korteweg voluntarily ceded
his professorship in 1913.

In 1891, Korteweg published two seminal papers in the
same volume of the Archives Néerlandaises des Sciences Ex-
actes et Naturelles. The first concerned critical points, the
second was about folds on surfaces.5 The French version of
van der Waals’s paper on the molecular theory of mixtures6

appeared in the same volume. Van der Waals had worked on
his theory for many years, and received Korteweg’s assis-
tance with the mathematical aspects. 

The van der Waals equation
Why was van der Waals so interested in the phase behav-
ior of fluid mixtures? Fluid criticality had been recognized
since 1822, and the critical points of many fluids had been
measured by the time van der Waals formulated his equa-
tion of state in 1873. Reasonable approaches had been de-
veloped for describing the properties of gaseous mixtures
and liquid solutions, but there remained a no man’s land
at the intermediate densities where criticality typically oc-
curs. (For a tutorial on criticality and its relation to phase
transitions, see the box on page 49.)

Thomas Andrews published his experimental explo-
ration of the criticality and condensation behavior of car-
bon dioxide in 1869. Four years later, van der Waals’s
equation of state offered a satisfactory formulation of both
vapor and liquid properties.6 By 1880, Andrews, Louis
Cailletet, and even van der Waals himself had experi-
mented with the condensation of pressurized gas mix-
tures, but they were at a loss to interpret the results. 

One could argue that the theoretical problem of phase
behavior in fluid mixtures had already been solved. The sem-
inal work of Josiah Willard Gibbs, published between 1873
and 1878, provided the theoretical tools.7 Gibbs’s achieve-
ment was as formidable in its concepts and completeness as
it was forbidding in its abstract approach. Among the few sci-
entists grasping its significance were the omniscient James
Clerk Maxwell and van der Waals. Nevertheless, even van
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der Waals did not know how to apply Gibbs’s theory to the
mixture he had studied. Not until 1890 did van der Waals
build a bridge between theory and the laboratory by gener-
alizing his 1873 equation of state so that it could be applied
to two-component systems.

Before considering those relatively complicated sys-
tems, we review some important properties of the simpler
one-component systems. The van der Waals equation of
state for a mole of fluid is 

(P ⊕ a/V2)(V ⊗ b) ⊂ RT, (1) 

where P is the pressure, T the temperature, V the molar
volume, and R the molar gas constant. The equation con-
tains two substance-specific constants: b, which represents
the volume excluded by the molecules, and a, which meas-
ures the attraction between molecules. Figure 2a shows
P–V isotherms of the van der Waals equation for temper-
atures above, at, and below the critical value. 

Solving for the pressure from equation 1 and inte-
grating it with respect to volume yields, apart from an un-
specified function of temperature, a free energy that van
der Waals (following Gibbs) called the c function. Nowa-
days it is called the Helmholtz energy, denoted A:

A(V, T) ⊂ ⊗RT ln(V ⊗ b) ⊗ a/V. (2)

Van der Waals preferred this free (Helmholtz) energy be-
cause he could derive it explicitly from his equation of state. 

Figure 2b displays the Helmholtz
function along a subcritical isotherm.
By splitting into two phases of vari-
able proportions and following the tie
line instead of the curve, fluid states
lower their Helmholtz energy. 

The T–V diagram in figure 2c
shows the coexistence curve, or con-
nodal, the locus of the molar volumes
of coexisting vapor and liquid as a
function of temperature. Those molar

volumes become equal at the critical point C. Inside the
connodal lies the spinodal, which bounds the region in
which the system is thermodynamically unstable, the
pressure increasing with volume.

Generalization to two components
Van der Waals generalized his equation of state from one
to two components by postulating that a and b depend on
the relative amounts of the two components.6 The mole
fraction X of the second component is one way to parame-
terize the relative quantities. The equation of state for a
two-component mixture is thus

(P ⊕ aX /V2)(V ⊗ bX) ⊂ RT. (3)

For the applications we discuss, the excluded volume bX is
taken to be a constant independent of the mole fraction.
The attraction parameter aX is assumed to have the form

aX ⊂ (1 ⊗ X)2a1 ⊕ 2X(1 ⊗ X)a12 ⊕ X2a2, (4)

with the subscripts 1 and 2 indicating the two components.
The positive constant a12 denotes the strength of the mo-
lecular attraction between the two components. The
Helmholtz energy of the mixture is given by

A(V, X,T ) ⊂ ⊗RT ln(V ⊗ bx) ⊗ aX / V ⊕
RT [X ln X ⊕ (1 ⊗ X ) ln(1 ⊗ X )]. (5)

The last term in equation 5 represents Gibbs’s ideal-mix-
ing term.7
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FIGURE 1. DIEDERIK J. KORTEWEG in profile, as sketched
by Dutch artist Jan Veth in 1906. (Courtesy of Bastiaan 
Willink, Erasmus University, Rotterdam.)



Thus, the Helmholtz energy of a binary mixture is a
function of three variables: V, X, and T. According to
Gibbs’s phase rule, the system will have critical curves in-
stead of critical points, coexistence surfaces instead of co-
existence curves, and up to four coexisting phases. The re-
sult is some very complicated phase behavior.

In the one-component case, as seen in figure 2b, a line
doubly tangent to the loop in the isothermal A(V) curve for
the van der Waals equation yields two coexisting phases
of different molar volumes. Similarly, in the two-compo-
nent case, the isothermal A(V, X) surface for the van der
Waals mixture equation may be dented to allow a plane to
touch it in more than one point. The system lowers its free
energy by splitting into two phases that differ both in
molar volume and composition. A double-tangent plane
guarantees that Gibbs’s thermodynamic equilibrium con-
ditions are fulfilled—that is, the temperature, pressure,
and chemical potentials of the two phases are equal.7,8 The
connection between a phase split and the existence of a
double-tangent plane to an appropriate thermodynamic
free-energy surface originated with Gibbs and continued
with Maxwell. The application to A(V, X), however, was
due to van der Waals.

Figure 3 shows a typical region of a smooth surface
z(x, y) near an ordinary critical point. At a point where the
surface is bowl-shaped, the curvature is positive: All
nearby points are on the same side of the tangent plane.
At a point in the saddle-shaped region, the curvature is

negative: There are nearby points on both sides of the tan-
gent plane. Thermodynamic free energies are always un-
stable at points of negative curvature. The spinodal in fig-
ure 3 is the boundary between regions of positive and
negative curvature. At spinodal points, the curvature is
zero. A double-tangent plane rolling over the surface traces
out a coexistence curve, or connodal. We use the word fold
to describe the region bounded by the connodal. The fold
shown in figure 3 ends in a critical point where the two
tangent points merge. Korteweg and Maxwell credit
Arthur Cayley for first defining such a point.

Van der Waals was able to show that, when his mix-
ture equation was applied to components not greatly dis-
similar, ordinary vapor–liquid phase separation occurs at
sufficiently low temperature. Thus, the isothermal surface
A(V, X) has a fold running from X ⊂ 0 to X ⊂ 1 that sepa-
rates a large-molar-volume gas phase and a dense liquid
phase. Such a fold is called a transverse fold. Separation of
liquid phases occurs if the attraction between the two com-
ponents is weaker than an appropriate average, that is, if
a12 < (a1 ⊕ a2)/2, assuming bX is constant. A longitudinal
fold then separates two dense phases that differ in compo-
sition. As temperature decreases, folds usually increase in
size, and may start interfering. This interference can lead
to formation of a triple-tangent plane and a region in which
three phases—two liquid, one vapor—are in equilibrium.

A fold is as well characterized by its spinodal as it is
by its connodal. The spinodal is the easier of the two to
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Below its critical temperature, a pure fluid, when pressur-
ized, passes from the vapor to the liquid phase by abruptly

undergoing a large change in molar volume. Such a first-order
phase transition is illustrated in figure 2a. At the critical point
of a fluid (see figure 2c), all properties of coexisting liquid and
vapor become identical, so the two phases can no longer be
distinguished. When a system is heated, rather than pressur-
ized, through the critical point, it passes from the two-phase to
the one-phase state less abruptly than it does under subcritical
pressurization: The heated system undergoes a second-order
phase transition, with an anomaly in the heat capacity. When
pressurized at a temperature higher than critical, the fluid
passes smoothly from low to high density without a phase
transition. In 1873, van der Waals provided the earliest for-
mulation of a critical-point phase transition.

Many systems display critical points. A partially miscible
liquid mixture becomes fully miscible at such a point. Certain
crystals consist of A and B atoms that, at low temperatures, are
arranged in an orderly way, occupying two interlaced sublat-
tices. That order disappears at a critical point, as does the spon-
taneous magnetization of a magnet. The Bragg–Williams the-
ory of order–disorder transitions, the Weiss theory of
magnetism, the van der Waals theory, and the Korteweg work
discussed in this article all implicitly assume that the environ-
ment of a molecule or magnetic spin equals the bulk average.
Such mean-field theories neglect fluctuations.

The modern approach to criticality began in the mid-20th
century with the study of a model for the magnetic phase tran-
sition, the Ising model. In that model, lattice sites are occupied
by magnetic spins that are either up or down. At low temper-
atures, the spins are aligned, and spontaneous magnetization
results. As the temperature increases, the spins begin to flip,
and the magnetization diminishes, to disappear at a critical
point. If up and down spins are replaced by A and B molecules,
the Ising model describes the disordering of an AB crystal, or

the criticality of an incompressible binary liquid mixture. It be-
comes a model for the gas–liquid transition—the lattice gas—by
identifying an up spin with the presence of a molecule, and
down spin with an empty site. Detailed analysis of the Ising
model has demonstrated that mean-field theory’s neglect of
fluctuations is significant, particularly near the critical point,
where the fluctuations are especially large. 

In 1937, Russian physicist Lev Landau used mean-field the-
ory to study the heat capacity of systems undergoing second-
order phase transitions.9 He introduced the fundamental con-
cept of the order parameter. In a magnet, for example, the
order parameter is the spontaneous magnetization. The mag-
netization is zero above, and finite, nonzero below the critical
point, called a Curie point in this context. Landau proved that
the curve of spontaneous magnetization versus temperature is
a parabola near the Curie point. The Landau expansion at a
critical point in terms of an order parameter forms the starting
point for the modern renormalization-group treatment of crit-
icality, which accounts for the effects of fluctuations.8

When a second-order transition is a function of an addi-
tional variable such as the pressure, the additional variable
leads to a curve of critical points. The curve may end at a point
at which the system splits into two phases. Landau worked out
the Taylor expansion of a free energy at points on the critical
curve, including the point where the phase split begins. In the
1960s, a physical system was discovered that exhibited the be-
havior studied by Landau: The critical curve for the superfluid
transition of helium-4 diluted with helium-3 ends with the
mixture splitting into a superfluid phase and a normal phase,
each with different composition. In 1970, Robert Griffiths
called the splitting point a (symmetric) tricritical point (see ref.
10). As early as 1891, however, Korteweg had thoroughly stud-
ied the Taylor expansion of the isothermal Helmholtz energy
of binary mixtures at points along a critical curve, and had dis-
covered a symmetric tricritical point.

Criticality in Brief



calculate, because it follows
from a local condition on the
surface: a change of the sign of
the curvature. The connodal
follows from a global condi-
tion—tangency in more than
one point—and was rarely cal-
culated by Korteweg.

Folds on surfaces
In his 1891 papers on critical-
ity,5 Korteweg analyzed the
properties of critical points
and the evolution of folds. In
the earlier of the two papers,
he studied the properties of
critical points on a surface. He
performed a Taylor expansion
of a surface z(x, y) at the crit-
ical point. The coordinates are
defined so that, at the critical
point, the tangent plane is the
xy plane and the y-axis is tan-
gent to the connodal. Because
the tangent plane at the criti-
cal point is the limit of double-
tangent planes, the surface is
very flat in the y direction
near the critical point. The
Taylor expansion near that
point is therefore quite differ-
ent from an expansion at any
arbitrary point on the surface.

From the expansion,
Korteweg derived the form
of the connodal and spinodal
at the critical point, and
found that, in first approxi-
mation, they were parabolas
in xy coordinates. By impos-
ing additional conditions on
the expansion coefficients,
Korteweg defined and exam-
ined double critical points.
He then derived a set of
three simultaneous equa-
tions, which, when solved,
yield all critical points on an arbitrary surface.

Next he assumed that z(x, y) depends smoothly on an
additional parameter—in the application to fluid mixtures,
the parameter may be the temperature or an adjustable in-
teraction parameter. His objective was to study local defor-
mations, that is, the effect of small changes of the parame-
ter on the surface or on the coefficients of its Taylor
expansion near the origin. Several things can happen. For
instance, an ordinary or double critical point may appear or
vanish, and a double critical point may split into two ordi-
nary critical points. In modern geometry one speaks of un-
foldings of z(x, y).

The Taylor expansion of the free energy at a critical
point is generally credited to Lev Landau.9 Korteweg, how-
ever, thoroughly explored such an expansion almost half a
century before Landau’s classic paper.

In Korteweg’s second paper, the first objective is the
global study (not restricted to the local neighborhood of a
point) of surfaces, their folds, critical points, spinodals, and
connodals. The next, and more difficult subject is global
deformations. If the surface depends on a parameter, how

do folds, critical points, spinodals and connodals evolve
with changes of the parameter? When should one expect
double-, triple- and quadruple-tangent planes, represent-
ing the coexistence of two, three, or even four phases? Kor-
teweg obtained his results by exploiting the local theory of
his first paper. 

A special but important result described by Korteweg
is the accessory fold, which is formed from a double criti-
cal point on the spinodal of an existing fold. The accessory
fold may be fully formed before it protrudes beyond the
connodal of the existing fold. Thus, in applications to a
thermodynamic free-energy surface, folds forming in the
unstable region deserve close attention.

Symmetric binary mixtures
General surfaces may have very complicated folds. In the
last part of his general-theory paper, Korteweg introduced
and analyzed in detail the van der Waals model for a sym-
metric binary mixture. That model yields interesting folds
that can be completely understood. For the symmetric mix-
ture shown in figures 4 and 5, the attraction coefficients
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FIGURE 2. THERMODYNAMIC VARIABLES for a
one-component system are related by the van
der Waals equation of state. (a) The relation be-
tween pressure and volume is shown along
isotherms, curves of constant temperature. Pres-
sure and volume coordinates are normalized so
that the critical point C lies at (1,1). The P–V
isotherm at the critical temperature (blue) has a
horizontal inflection point at C, where the com-
pressibility is infinite. The compressibility along
an isotherm above the critical temperature (or-
ange) is always finite. An isotherm below the
critical temperature (red) develops a so-called
van der Waals loop between the connodes K1

and K2. James Clerk Maxwell proved that the
areas (yellow) defined by the loop and the green
tie line that connects the connodes must be
equal. The connecting tie line describes two-
phase states of the system. The minimum (M1)
and maximum (M2) of the subcritical isotherm
are points of infinite compressibility; they are
called spinodal points. Between the spinodal
points, the compressibility is negative, which
thermodynamics forbids. (b) The Helmholtz
energy along a subcritical isotherm displays two
connodes connected by a doubly tangent tie
line. When the volume of the system is between
the values defined by the connodes, the system
can lower its free energy by following the tie
line and splitting into two phases, one liquid,
one vapor. The doubly tangent nature of the tie
line, like Maxwell’s equal-area rule, guarantees
that the two phases are in equilibrium. (c) The
coexistence curve, or connodal (solid curve),
connects the connodes at all temperatures. At a
given subcritical temperature, a dense liquid (at
K1) coexists with a vapor (at K2). As the temper-
ature increases, the molar volumes of vapor and
liquid approach each other. They become equal
at the critical point, above which there is no
longer a liquid–vapor phase transition. The
dashed curve is the spinodal, the locus of ex-
tremal points as detailed in (a). It bounds a re-
gion that is thermodynamically unstable.



satisfy a1 ⊂ a2 � a. The Helmholtz energy surface of the
two-component system is characterized by the single pa-
rameter k � a12 /a. If k > 1, the only fold characterizing the
system is a transverse vapor–liquid fold appearing at tem-
peratures below the common critical temperature of the
two components. The interesting case is k < 1, in which ad-
ditional phase separation occurs in the dense phase. Kor-
teweg labeled the different ranges of k he studied by the
letters A (k near zero) to E (k just below unity). 

In case E, a transverse fold forms, as for k > 1, but as
the temperature is lowered, separation begins in the liq-
uid phase. As the temperature further decreases, the
transverse and longitudinal folds begin to interfere, and a
triple tangent plane is formed. Figure 4a shows a region
in which two liquid phases and one vapor phase are all in
equilibrium. 

If, as in Korteweg’s case A, the interaction between the
two components is very weak, a longitudinal fold forms
even in the absence of a transverse fold (see figure 4b).
When the temperature drops to a particular value, a dou-
ble critical point forms on top of the existing critical point.
Such a coincidence of three critical points, clearly recog-
nized by Korteweg,5 is presently called a tricritical point.10

The tricritical point marks the end of the simple longitu-
dinal fold and the beginning of the two new transverse
folds. As the temperature decreases further, the double
critical point splits into two ordinary critical points, cre-
ating two accessory folds (see figure 4c). Those two folds
move to the sides so that, finally, a full transverse fold is
formed from the longitudinal fold.

The most interesting cases are at intermediate values
of k for which the transverse and longitudinal folds com-
pete. Figure 5 shows phase diagrams at successively de-
creasing temperatures that Korteweg analyzed as part of
case D. In figure 5a, competing folds move in from three
sides. As the temperature is lowered, opposing critical
points on transverse and longitudinal folds meet in three
pairs, not necessarily at the same temperature, then dis-
appear by passage through double critical points. For the
“central” value k ⊂ 0.565, the three pairs of critical points
merge at the same temperature.

In figure 5b, the folds have met and regions of one,
two, and three phases surround a small central one-phase
region. As the temperature is further lowered, the central
one-phase region shrinks. At one particular temperature,
a tangent plane touches the free energy surface at four
points, as shown in figure 5c. At still lower temperatures,
the central bowl-shaped region on the surface pulls up
above the quadruple tangent plane. A triple tangent plane
remains, though, together with three two-phase regions,
as in figure 4a. Korteweg calculated the range of k values
that admit four-phase regions and found 0.534 < k < 0.67. 

Modern work
By 1906, Dutch scientists had reached the limits of what

they could derive, given their computational tools, from
the van der Waals binary-mixture model. Progress had to
wait for the advent of the computer. During that wait,
much of Korteweg’s work was forgotten, although vestiges
can be found in the phase diagrams that appear through-
out fluid and materials science. The breakthroughs of mod-
ern physics around 1900 forced thermodynamics into the
background until the rebirth of interest in critical phe-
nomena in the mid-20th century. In the 1960s, Robert
Scott and his student Peter Van Konynenburg initiated a
thorough, computer-based analysis of the phase behavior
of the general van der Waals binary mixture.11 Robert Grif-
fiths and coworkers at Carnegie Mellon University redis-
covered the region of four-phase coexistence in the context
of a study of the three-state Potts model, which will now
be introduced.

As described in the box on page 49, the two-state Ising
model allows one to study criticality in, for example, a two-
component incompressible liquid or a one-component com-
pressible fluid. Likewise, a generalized lattice model in
which each site can be in one of three states can represent
a three-component incompressible liquid mixture or a two-
component compressible fluid mixture. One such model is
the symmetric three-state Potts model, which represents
a mixture of three identical components. That model,
widely studied in the 1970s, describes a system in terms
of the temperature and one mutual-interaction parameter.
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a FIGURE 3. A SMOOTH SURFACE z(x, y) near a critical point.
(a) Diederik Korteweg’s lithograph shows the spinodal (dashed
curve), which bounds a saddle-shaped region. A tangent plane
may touch the surface at two points, called connodes K1 and
K2. A tie line (not shown) connects the connodes. If rolled
across the surface, the double-tangent plane traces out a locus
called a connodal (solid curve). Korteweg called the part of the
surface inside the connodal a plait—a smooth fold. A fold may
end in a plait point, nowadays called a critical point, at which
two connodes coincide. If the surface is to represent a
Helmholtz energy near a critical point, it needs to be turned
upside down and tilted. (b) A similar surface, generated on a
computer, shows the connodal in red and the spinodal in green.



The 1973 mean-field results for the model obtained by
Joseph Straley and Michael Fisher at Cornell University
revealed the existence of a four-phase region. The corre-
spondence between their results and the phase diagrams
that Korteweg presented some 80 years earlier is evident
in figure 5. The analog of Korteweg’s diagram in figure 5b
for phase separation of three-component mixtures has
been rediscovered in various guises throughout the 20th
century.3 It was first described by Gibbs in 1876.7

Griffiths and coworkers did extensive numerical stud-
ies of both the symmetric and the asymmetric three-state
Potts model (including the four-phase region) in the mean-
field approximation. In 1978, they looked for, and found, a
four-phase region in the van der Waals binary mixture.
Their lower bound and center of the four-phase region for
the symmetric mixture agree with Korteweg’s 1891 re-
sults, but there is a discrepancy with Korteweg’s value for
the upper bound. A symbolic-numerical solution of Korte-
weg’s conditions for the upper bound, by one of us (Levelt),
unearthed a wrong sign in one term of Korteweg’s equa-
tions for that bound. After correction, Korteweg’s equations
yield precisely the modern numerical result.

Just as physicists have overlooked Korteweg’s contri-
butions to the thermodynamics of phase transitions, math-
ematicians seem to have completely forgotten Korteweg’s
work on folds on surfaces. That is an amazing oversight,
given the originality and generality of his results, and the
notions and techniques he used—singularities, deforma-

tions, and unfoldings—that are quite characteristic of
modern geometry. Korteweg exploited new mathematical
ideas to describe, analyze, and understand phase equilib-
ria in binary mixtures. The reappearance in modern sin-
gularity and catastrophe theory12 of problems Korteweg
studied, particularly in the geometry of surfaces, confirms
the importance of his new ideas. 

Korteweg certainly would have benefited from the
computational tools available to modern researchers. Sym-
bolic computer software13 would have allowed him to re-
place his many low-order approximations to physical
quantities by expressions of arbitrarily high order and pre-
cision. Symbolic computation would have saved him much
tedious labor in his analysis of the van der Waals model
and enabled him to produce other visualizations in addi-
tion to the beautiful diagrams he published.

Part of this work was carried out at the symbolic computation
group of the University of Waterloo, where Levelt recently 
occupied an Ontario Research Chair in Computer Applica-
tions. The research received support from the Foundation for
Fundamental Research of Matter, and the Royal Holland 
Society of Sciences and Humanities in the Netherlands. We
thank Paul Meijer for alerting us to Korteweg’s work. We
thank John Rowlinson and NIST colleagues Jeffrey Aarons,
Bert Coursey, and Daniel Friend for inspiration, advice, and
constructive criticism.
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FIGURE 4. PHASE SEPARATION of a
symmetric van der Waals mixture, as

drawn by Diederik Korteweg. Korteweg
warned his readers that many features of

the diagrams, in particular the con-
nodals, are only qualitative. In all the di-
agrams, the temperature is fixed, the ver-

tical component is the mole fraction X,
and the horizontal coordinate is the vol-

ume (called v by Korteweg). The volume
axis runs from the close-packed volume

(V ⊂ b) on the right to larger volumes
on the left. The line V ⊂ 3b indicates the
critical volume of the pure components.

The three plots are for different values of the interaction
parameter k, which runs from just below unity (case E) to
near zero (case A). Case A2 is for lower temperature than
A1. Regions where the surface has positive curvature are
blank; those where it has negative curvature are shaded.
Dashed curves are spinodals, solid curves are connodals.

Red line segments are tie lines, and triangles represent
three-phase coexistence. (a) k is almost 1. Below the critical
temperature of the two components, a transverse fold sepa-

rates vapor and liquid. At a much lower temperature, a
longitudinal fold appears, separating two liquid phases. As

the longitudinal fold cuts the connodal of the transverse
fold, a three-phase region, indicated by the triangle a1, a2,

a3, is formed. (b) k is near 0. The temperature is above the
critical temperature of the two components, and there is
no phase separation near X ⊂ 0 and X ⊂ 1. Nevertheless,

there is phase separation at small volumes, and a longitudi-
nal fold is present. (c) k as in (b). The temperature is below

that in (b), but still above the critical temperature of the
components. The longitudinal fold has split at the top and
developed two accessory folds that move to the sides with

falling temperature, and finally produce a complete 
transverse vapor–liquid fold.
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FIGURE 5. INTERMEDIATE VALUES of the interaction parameter k lead to complicated phase behavior. The illustrations in the
right panels are drawings from Diederik Korteweg’s analysis of his intermediate case D. The graphic conventions used here are 
described in figure 4. The temperature decreases from the top panel to the bottom. (a) Competing folds move in from three sides.
Each fold has split at the top, forming accessory folds that each give rise to a three-phase region. The accessory folds on the 
longitudinal fold originated from a tricritical point; those on the transverse folds originated from double critical points on their
spinodal. (b) Three pairs of opposing critical points have merged and disappeared, welding the three folds of (a) together. A small
central one-phase region is surrounded by three two-phase, and three three-phase regions. Three more two-phase regions exist
near the boundaries V ⊂ b and X ⊂ 0, 1. (c) At a specific temperature, a tangent plane touches the free-energy surface at four
points. At that temperature, the four phases connected by dashed tie lines coexist. The left panels show an analogous sequence of
events for the symmetric three-state Potts model, according to the analysis by Joseph Straley and Michael Fisher published in
1973 in the Journal of Physics A volume 6, page 1310 (copied with permission of the authors and IOP Publishing Limited, 
Bristol, UK).


