
Until about 10 years ago, expressions involving frac-
tional derivatives and integrals were pretty much re-

stricted to the realm of mathematics. But over the past
decade, many physicists have discovered that a number of
systems—particularly those exhibiting anomalously slow
diffusion, or subdiffusion—are usefully described by frac-
tional calculus. Those systems include charge transport in
amorphous semiconductors, the spread of contaminants in
underground water, relaxation in polymer systems, and
tracer dynamics in polymer networks and in arrays of con-
vection rolls. 

Fractional diffusion equations generalize Fick’s sec-
ond law and the Fokker–Planck equation by taking into
account memory effects such as the stretching of polymers
under external fields and the occupation of deep traps by
charge carriers in amorphous semiconductors. Such gen-
eralized diffusion equations allow physicists to describe
complex systems with anomalous behavior in much the
same way as simpler systems.

Fractional calculus
Physicists are all familiar with the high-school calculus
that introduces students to derivatives of integer order n,
dny/dxn. Those derivatives and their inverse operations—
integrations—provide the language for formulating and
analyzing many laws of physics. But physicists generally
aren’t taught about fractional-order derivatives, which
might be formally expressed as, for example, d1/2y/dx1/2. Is
the fractional calculus all that difficult?

In fact, the calculus of fractional integrals and deriv-
atives is almost as old as calculus itself. As early as 1695,
Gottfried von Leibnitz, in a reply to Guillaume de l’Hôpi-
tal, wrote, “Thus it follows that d1/2x will be equal to
x=dx : x, . . . from which one day useful consequences will
be drawn.” About 300 years had to pass before what is now
known as fractional calculus was slowly accepted as a
practical instrument in physics.1 Before that acceptance,
fractional calculus had to be more rigorously formulated.
Important contributions to that end stem from the work of

Pierre-Simon Laplace, Bernhard Riemann, Joseph Liou-
ville, Oliver Heaviside, Arthur Erdélyi, and many others.

One way to formally introduce fractional derivatives
proceeds from the repeated differentiation of an integral
power:

(1)

For an arbitrary power m, repeated differentiation gives

(2)

with gamma functions replacing the factorials. The
gamma functions allow for a generalization to an arbitrary
order of differentiation a,

(3)

The extension defined by equation 3 corresponds to the
Riemann–Liouville derivative.2 It is sufficient for handling
functions that can be expanded in Taylor series. 

A second, more elegant and general way to introduce
fractional derivatives uses the fact that the nth derivative
is an operation inverse to an n-fold repeated integration.
Basic is the integral identity

(4)

Clearly, the equality is satisfied at x ⊂ a, and it is not
difficult to see iteratively that the derivatives of both sides
of the equality are equal. A generalization of the expres-
sion allows one to define a fractional integral of arbitrary
order a via

(5)

A fractional derivative of an arbitrary order is defined
through fractional integration and successive ordinary dif-
ferentiation. For additional elaboration, see box 1, which
also discusses the relation between the value of the inte-
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distribution of relaxation times.

Igor M. Sokolov, Joseph Klafter, and Alexander Blumen



gration limit a and definitions for fractional differentiation
based on the Laplace transform (when a ⊂ 0) and the
Fourier transform (when a ⊂ ⊗F). The table above pres-
ents (for a ⊂ 0) several examples of semi-integrals and
semi-derivatives, operations for which a ⊂ �1/2. 

In this article, we are generally concerned with frac-
tional time derivatives, and we set a ⊂ 0, in effect choos-
ing t ⊂ 0 as the beginning of the system’s time evolution.
In particular, we note that the operator 

(6)

with 0 < a < 1, plays a central role in generalized diffusion
equations.

From Fick to fractional diffusion
The foundations of kinetics were established more than 150
years after the prophecy of Leibnitz, without the use of frac-
tional calculus. In 1855, the young Adolf Fick, a pathologist
at the University of Zürich, wrote a work entitled “Über
Diffusion” (“On Diffusion”). The work was published in
Poggendorf’s Annalen der Physik, the Physical Review Let-
ters of that time. Fick started by observing that “diffusion
in water confined by membranes is not only one of the basic
factors of organic life, but it is also an extremely interest-
ing physical process and, as such, should attract much more
attention from physicists than it has so far.” Diffusion
processes such as those considered by Fick, and processes
that are described by fractional calculus, continue to fasci-
nate physicists and others.

Fick was an experimental physiologist, but his work
on diffusion was theoretical, and his approach would today
be called a phenomenological linear-response theory ap-
plied to diffusion. In brief, the result of diffusion is known
to be the equilibration of concentrations. Thus, particle
current has to flow against the concentration gradient. In
analogy with Ohm’s law for electric current, or with
Fourier’s law for heat flow, Fick assumed that the current
j is proportional to the concentration gradient, so that

(7)

an equation now known as Fick’s first law. Here, k is the
diffusion coefficient with dimension of L2/T and c is the
concentration. If, in addition, particles are neither created
nor destroyed, then, according to the continuity equation,

(8)

Combining Fick’s first law with the continuity equation
gives Fick’s second law, also known as the diffusion 
equation:

(9)
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The fractional integration operator a Dx
⊗a is defined by equa-

tion 5. The a-th fractional derivative is then2

The number of additional differentiations n is
equal to [a] ⊕ 1, where [a] is the whole part of a.
From the above definition it follows that

as envisaged in equation 3. Note that here the
lower limit of integration is zero. An interesting
consequence of the rule for differentiating powers
is 

That is, the derivative of a constant vanishes only
if the order of the derivative is integer, in which
case G(1 ⊗ a) diverges. Another interesting result
holds for the derivative of the exponential func-
tion:

where g(⊗a, x) is the incomplete g function.
The practical use of fractional calculus is un-

derlined by the fact that, under Laplace transform, the opera-
tor 0 Dt

⊗a has the simple form

The result for the differentiation of an exponential may
seem disappointing. But if one chooses the lower limit of in-
tegration to be a ⊂ ⊗ F in equation 5, the resulting Weyl de-
rivative satisfies ⊗FDx

a e x ⊂ e x. Moreover, the Weyl definition
reproduces the familiar properties of Fourier-transformed in-
tegrals and derivatives:

We see that there are several ways to interpret “da/dxa,” all of
which coincide with the usual differentiation if a is an integer.
That may have been one of the reasons for the late acceptance
of fractional calculus as a tool to describe physical phenom-
ena. In fact, the freedom of definition is an advantage that al-
lows one to take additional physical information (such as
whether a force acting on a system is always applied or is
turned on at a specific time) directly into account. 
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Box 1. Definitions and Examples
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which is a closed equation for the temporal evolution of the
concentration.

Fick’s phenomenology missed the probabilistic point
of view central to statistical mechanics. It was Albert Ein-
stein who, 50 years after “On Diffusion,” first derived the
diffusion equation from the postulates of molecular theory,
in which particles move independently under the influence
of thermal agitation. In his picture, the concentration of
particles c(r, t) at some point r is proportional to the prob-
ability P(r, t) of finding a particle there. Thus, the diffu-
sion equation holds when probabilities are substituted for
concentrations. 

If, for example, a particle is initially placed at the ori-
gin of coordinates in d-dimensional space, then its evolu-
tion, according to equation 9, is given by

(10)

The mean squared displacement of the particle is thus

(11)

Note that the scaling form ∀r2¬ } t follows directly from the
structure of the diffusion equation. That equation is sec-

ond order in the spatial coordinates and
first order in time: Changing the spatial
scale by a factor of 3 corresponds to chang-
ing the time scale by a factor of 9.

In a variety of physical systems, how-
ever, the simple scaling pertinent to Fick-
ian diffusion is violated.3,4 The mean
squared displacement grows as ∀r2¬ } ta

with the exponent a Þ 1. A consistent gen-
eralization of the diffusion equation could
still be second order in the spatial coordi-
nate and have a fractional-order temporal
derivative—for example,

(12)

where the dimension of the fractional dif-
fusion coefficient ka is [L2/Ta]. Equation 12
looks rather unusual. Does it make any
sense? It does, as we now proceed to show.

Continuous-time random walks
Random walks and diffusion serve as an interface between
kinetics on one hand and derivatives and integrals of frac-
tional order on the other. The simplest model leading to
normal diffusion is the random walk. Related models were
introduced in Lord Rayleigh’s studies of isoperiodic vibra-
tions (1880) and in Louis Bachelier’s analysis of stock-
market fluctuations (1900). If a random walker strolling
in one dimension moves a step of length a in either direc-
tion precisely when each unit time elapses, then the dis-
placement after a large number of steps (that is, after a
long time) will be distributed according to the Gaussian,
equation 10.

In continuous-time random walks (CTRWs)—intro-
duced in physics by Elliot Montroll and George Weiss—the
condition that the steps occur at fixed times is relaxed.5

Rather, the time intervals between consecutive steps are
governed by a waiting-time distribution c(t). In describing
transport, the c(t) distributions may stem from possible
obstacles and traps that delay the particle’s jumps and
thus introduce memory effects into the motion. If the mean
waiting time between consecutive steps is finite, t ⊂
∫t c(t) dt < F, the CTRW is described by Fick’s diffusion
equation, with the diffusion coefficient k equal to a2/2t. 

The situation changes drastically if the mean waiting
time diverges, as is the case for power-law waiting-time
distributions of the form

(13)  

with 0 < a < 1.6 (See the article by Harvey Scher, Michael
F. Shlesinger, and John T. Bendler, PHYSICS TODAY, Janu-
ary 1991, page 26.) Figure 1 compares the displacements
of walkers undergoing simple random walks with those fol-
lowing CTRWs. The behavior for a CTRW is subdiffusive.
The mean square displacement grows as 

(14)

Transport phenomena in systems exhibiting subdiffusion
have a < 1, whereas systems that exhibit superdiffusion
have a > 1.

Fractional modifications of the commonly used 
diffusion and Fokker–Planck equations generate the sca-
ling behavior seen in subdiffusive systems. Consider, for 
example, the fractional equation first introduced 
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FIGURE 1. CONTINUOUS-TIME RANDOM WALKS (CTRWs) do
not cover ground as quickly as simple random walks. The black
lines indicate a specific realization of a simple random walk
(left) and a CTRW (right). Note that CTRW steps occur very
irregularly; most of the time the walker doesn’t move at all. As
a consequence, the mean square displacement in CTRWs grows
considerably slower than in simple random walks. The blue
and the red curves indicate the typical behavior of the displace-
ment: ∀x2¬1/2 } t1/2 for the simple random walk and ∀x2¬1/2 } t1/4

for a CTRW with power-law parameter (see text) a ⊂ 1/2. The
filled yellow curves show the probability distributions P(x,t) at
t = 1. For regular diffusion, which corresponds to the simple
random walk, the distribution is Gaussian. For diffusion gov-
erned by CTRWs, the distribution satisfies the fractional diffu-
sion equation. Its characteristic tentlike form displays a cusp at
x ⊂ 0.



by Venkataraman Balakrishnan and by W. R. Schneider
and W. Wyss:6

(15) 

Equation 15 can be derived from the CTRW scheme along
the lines used in Einstein’s work on Brownian motion,7 and
thus applies to all situations discussed adequately by
CTRW. It treats systems that behave anomalously in a
framework very much like the framework used for systems
with normal diffusion, so that known solutions of the sim-
ple case can be easily generalized to the anomalous case.8

Fractional Fokker–Planck equation
The standard diffusion equation accounts for a particle’s
motion due to uncorrelated molecular impacts. In many
cases, an external deterministic force is imposed on a sys-
tem in addition to such random impacts. The
Fokker–Planck equation considers both contributions.9 It
can be derived by combining Fick’s first law—expressed in
terms of probability current and taking into account the
external force—with the continuity equation. The proba-
bility current is 

(16)

where f is the external force acting on the particle and m
is the particle’s mobility. When the continuity equation is
applied to the probability current, the Fokker–Planck
equation follows:

(17)

In the absence of an external force, f ⊂ 0, the
Fokker–Planck equation reduces to the standard diffusion
equation.

In parallel to the diffusion case, one can generalize the
Fokker–Planck equation to

(18)

where ma is the fractional mobility.
In equilibrium, the current j must vanish.

After expressing the force in terms of a potential
function U(r), one may write the equilibrium prob-
ability distribution that satisfies equation 18 in the
form P(r) } exp(⊗maU(r)/ka). Now, for independent

particles, the equilibrium probability is a Boltzmann dis-
tribution, so ka /ma ⊂ kBT, a generalization of Einstein’s re-
lation k/m ⊂ kBT.

For example, consider a constant external force acting
in the x direction. The force leads to a mean drift, ∀x(t)¬f ⊂
ma fta/ G(1 ⊕ a), which is related to the force-free mean
square displacement ∀x2(t)¬f ⊂ 0 ⊂ 2kata / G(1 ⊕ a) through

(19)

The expression above is the fluctuation-dissipation theo-
rem, which holds for subdiffusion in the fractional
Fokker–Planck framework.

Ornstein–Uhlenbeck processes in one dimension pro-
vide a second example. Such processes involve diffusion in
the harmonic potential U(x) ⊂ bx2/2 so that the force is
f ⊂ ⊗bx. The corresponding fractional Fokker–Planck
equation is

(20)

Figure 2 shows snapshots of the time-dependent probabil-
ity distribution for particles originally at a well-defined lo-
cation, according to both the fractional and conventional
Fokker–Planck equations with harmonic potentials. In
both cases, the asymptotic forms of the distribution are
Gaussian, because the Fokker–Planck equations describe
the relaxation of thermodynamic systems to equilibrium.
In the fractional case, though, the distribution at finite
times has a cusp characteristic of broad CTRW distribu-
tions. 

In thermodynamic applications, one is mostly inter-
ested in mean values—for example, the mean particle po-
sition <x(t)> ⊂ ∫ x P(x, t) dx. In the regular case of simple
diffusion in the harmonic potential U(x), there is a char-
acteristic time t given by t⊗1 ⊂ bm. The evolution of the
mean position satisfies

(21)
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FIGURE 2. PROBABILITY DISTRIBUTIONS EVOLVE as
particles governed by Fokker–Planck equations with
harmonic potentials relax toward Boltzmann equilib-
rium. The graphs at left (with position x and time t in
arbitrary units) show the evolution of the probability
distribution for a particle collection initially prepared
at x ⊂ 1. For both the regular (blue) and a ⊂ 1/2 frac-
tional Fokker–Planck (red) equations, the distribu-
tions asymptotically approach Gaussians with a mean
value tending to zero. For the regular equation, the
distribution is always a Gaussian. The behavior of the
solution in the fractional case is strikingly different.
It’s not just that the speed of relaxation is consider-
ably slower. The form of the distribution is character-
istic of subdiffusive systems, showing a cusp singular-
ity, at the initial value of x, that remains visible even
at very long times. 
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It follows that ∀x(t)¬ decays exponentially toward equilib-
rium: ∀x(t)¬ ⊂ ∀x(0)¬ exp(⊗t/t). 

In the case of diffusion governed by the fractional
Fokker–Planck equation, the mean displacement obeys 

(22)

with t⊗a ⊂ bma, as is readily verified by multiplication of
equation 20 by x and integration, followed by an integra-
tion by parts of the right-hand side. The solution of equa-
tion 22 can be expressed in terms of the Mittag–Leffler
function Ea via <x(t)> ⊂ <x(0)> Ea(⊗ (t/t)a). The Mittag–
Leffler function, illustrated in figure 3 for a ⊂ 1/2, is a 
natural generalization of the exponential function; in 
particular, E1 (⊗t/t) ⊂ exp(⊗t/t). Figure 4 compares the ex-
ponential relaxation of the mean position obtained in the
case of normal diffusion with the slower relaxation de-
scribed by the Mittag–Leffler function. 

Applications
The regular Ornstein–Uhlenbeck process is a good model
for the behavior of a diffusing particle trapped in optical
tweezers: The tweezers create an approximately harmonic
well. The corresponding relaxation patterns display expo-
nential decays, as shown by Roy Bar-Ziv and colleagues
from the Weizmann Institute of Science in Rehovot, Israel.
Particles moving according to the fractional Ornstein–Uh-
lenbeck equation (equation 20) should exhibit Mittag–Lef-
fler relaxation. Rony Granek, from Ben-Gurion University,
suggested that such relaxation would be observed for
beads attached to a vesicle and held by optical tweezers.
Walter Glöckle and Theo Nonnenmacher of the University
of Ulm, Germany, used Mittag–Leffler relaxation in their
analyses of rheology in polymeric systems and of rebind-
ing experiments in proteins. This past year, a group led by
Harvard University’s Sunny Xie used the fractional Orn-

stein–Uhlenbeck equation to describe the dynamics of pro-
tein molecules probed by electron transfer. 

One can expect applications of the fractional
Fokker–Planck equation in chemical and biological sys-
tems. As early as 1916, Marian Smoluchowski showed how
the rates of chemical reactions can be determined by im-
posing boundary conditions on diffusion equations. Be-
cause the fractional Fokker–Planck equation handles
boundary value problems in the same way as its regular
counterpart does, it is a valuable tool for describing reac-
tions in complex systems, as recently reported by groups
led by Katja Lindenberg at the University of California,
San Diego, and Bob Silbey at the Massachusetts Institute
of Technology.10

Many environmental studies are complicated by a
poor understanding of the diffusion of contaminants in
complex geological formations. Experiments point to
anomalous diffusion. They suggest the need for fractional
diffusion–advection equations,11 which may help scientists
to understand and predict the long-term impact of pollu-
tion on ecosystems.12

Detailed studies of the fractional Kramers problem
represent another possible arena for the application of
fractional kinetics. The problem concerns the escape of a
particle over a potential barrier. First steps toward its so-

d ( )∀ ¬x t
dt t⊂ ⊗ t⊗a

0
1–D x ta ∀ ¬( ) ,
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FIGURE 3. THE MITTAG–LEFFLER FUNCTION describes the
relaxation toward equilibrium of particles governed by the
fractional Fokker–Planck equation. For t close to zero, the
function behaves like a stretched exponential, Ea (⊗(t/t)a) �
exp (⊗(t/t)a) /G(1 ⊕ a). For large t, the function approaches a
power-law, Ea (⊗(t/t)a) � (t/t)⊗a /G(1 ⊗ a). The red curve
shows the Mittag–Leffler function for a ⊂ 1/2. The dashed
lines show the short-time (blue) and the long-time (black)
forms. Note the double logarithmic scales.
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FIGURE 4. A PARTICLE DIFFUSING in a harmonic potential
exemplifies thermodynamic relaxation. For regular diffusion,
the mean value of the particle’s position decays exponentially
with time (blue). In the fractional, subdiffusive case, the relax-
ation is described by a Mittag–Leffler function. The particular
Mittag–Leffler function leading to the relaxation illustrated in
red has as its fractional parameter a ⊂ 1/2.



lution have been achieved by Ralf Metzler and Yossi
Klafter, both working at Tel Aviv University.

Fractional calculus can be applied to many areas of
physics, other than fractional kinetics. In fact, fractional
calculus was introduced in a heuristic manner long ago in
rheology (for example, by Andrew Gemant in 1936) in an
effort to describe linear viscoelasticity through the exten-
sion of the material-dependent constitutive equations used
in the field.13 Box 2 discusses examples of hierarchical
structures whose dynamics are conveniently described

with fractional derivatives. Many other examples of ap-
plications of fractional calculus to modern physics are pre-
sented in reference 1. 

What about superdiffusion? Fractional generaliza-
tions of the diffusion and Fokker–Planck equations have
been introduced for superdiffusion as well. Those equa-
tions, which apply spatial fractional derivatives rather
than temporal ones, are intimately related to Lévy
processes in space. George Zaslavsky has advocated using
such equations to describe chaotic diffusion in Hamilton-
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Fractional derivatives often emerge in the
description of self-similar, hierarchically

organized systems. Consider a discrete model
for a transatlantic telegraph cable, as proposed
by Lord Kelvin. The model consists of identi-
cal resistances R and identical capacitors C, il-
lustrated in the figure at right. The response of
the cable to a voltage V(t) applied at, say, its
right end may be related to the impedance Z of
the system. The relation between impedance,
current I, and the voltage is most simply ex-
pressed in terms of the Fourier-transformed
functions:

Calculating Z(w) is a standard problem in the theory of electri-
cal circuits.  For the transatlantic cable model, the solution is
Z(w) ⊂ R ⊕ [iwC ⊕ 1/Z(w)]⊗1, or Z(w) ⊂ R/2 ⊕ (R2/4 ⊕
R/iwC )1/2. In the limit in which both R and C tend to zero
(both depend on the subdivision length of the cable), but the
quotient R/C ⊂ z2 stays constant, one obtains Z(w) O z(iw)⊗1/2.
Hence

where, for convenience, we have set z ⊂ 1. In terms of the cor-
responding functions of time, I(t) ⊂ ⊗FDt

1/2V(t), involving
semi-differentiation, as pointed out by Oliver Heaviside. The
response of the cable to a voltage V(t) ⊂ v(t)q(t) switched on at
t ⊂ 0 is given by

As can be confirmed by referring to equation 5, which defines
the fractional integral, the above expression for the current de-
scribes a retarded response, I(t) ⊂ d/dt ∫0

t
M(t ⊗ t�)V(t�)dt�, with

the memory function M(t) decaying slowly, as t⊗1/2. Fractional
derivatives, as the transatlantic cable model shows, are a natu-
ral tool for describing the linear response of systems with long,
power-law memory. 

The mechanical equivalent of Kelvin’s model, a chain con-
sisting of springs and beads immersed in a viscous fluid, is the
standard Rouse model in polymer dynamics. That model, illus-
trated below the transatlantic cable, accounts for the fluctuat-
ing forces due to solvent molecules, and for viscous friction. 

If a force f (t) ⊂ f0q(t) acts on one of the monomers of the
chain, then the mean displacement of the monomer satisfies
<x(t)> } t a, with a ⊂ 1/2. Introducing hydrodynamic inter-
actions—forces mediated by the solvent—leads to the Zimm
model, for which the exponent a in the mean displacement’s
time evolution is 2/3. Helmut Schiessel, Christian Friedrich,
and Alex Blumen obtained similar scaling laws when consider-
ing the dynamics of other hierarchical structures, such as frac-
tal networks (see ref. 1, p. 331).

More complicated behavior arises when several forces act 

simultaneously—for example, when the monomers of a net-
work are randomly charged and exposed to an external volt-
age. In such cases, one still observes scaling, but with values of
a that depend on the distribution of the charges on the poly-
mer. Many complicated systems can be modeled using frac-
tional differential equations whose parameters depend on a.
For example, the figure below presents measurements for the
mechanical storage (circles) and mechanical loss (squares) mod-
uli for two ethane-co-1-butenecopolymer compounds respond-
ing to a harmonic external strain field. The horizontal axis
gives the field’s frequency and the vertical axis the resulting
stress moduli, both in appropriately normalized units. (For
further details of the measurements by Christian Friedrich of
the University of Freiburg in Germany, see ref. 1, p. 331.) The
black curves, derived from the so-called fractional Maxwell
model, fit the data well. 

I t( ) ⊂ 0D   V t .( )
1/2
t

I V( ) ( ) /w w⊂ Z i( ) ( )w w⊂ V( ),w
1/2

Z I V( ) ( ) ( ).w w w⊂

R

C

Box 2. From Oliver Heaviside to Stress Moduli of Polymers
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ian systems, and other applications have been discussed
by Hans Fogedby and by Bruce West and Paolo
Grigolini.1,14 We hasten to note, however, that superdiffu-
sion is far from being completely understood. 

The classical diffusion laws derived by Fick dominated
physicists’ views on diffusion and transport for more than
a century. But recent observations have clearly demon-
strated that Fick’s laws have exceptions. Those exceptions,
which have been termed strange kinetics,3 require a com-
pletely fresh view of kinetic processes, based on random-
walk approaches and on unconventional distribution func-
tions (see the article by Joseph Klafter, Michael F.
Shlesinger, and Gert Zumofen, PHYSICS TODAY, February
1996, page 33). Fractional calculus helps formulate the
problems of strange kinetics in a simple and elegant way.

We thank our colleagues Eli Barkai, Christian Friedrich, Ralf
Metzler and Helmut Schiessel for fruitful discussions.
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