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Over the past decade, we
have seen a revolution

in the ways we communi-
cate. The Internet has creat-
ed the demand for extremely
high information transfer
rates, while cell phones and
other mobile wireless de-
vices have fueled the desire
for ubiquitous connectivity
for a dense population of
users. The near future
promises the merging of
these two worlds: wireless
high-bit-rate devices.

Perhaps the most fundamental hurdle on the road
toward this dream is the relatively low bit rate that cur-
rent wireless systems can provide.1 The limit for the
amount of information—known as the information capac-
ity I—that can be sent between a single transmitter and
a single receiver is given by Claude Shannon’s famous
formula:2,3

(1)

where S is the received signal power, N is the noise power,
and information is measured in bits per second per hertz
of bandwidth available for transmission. (For an explana-
tion of this formula, see the box on page 40.) With the
maximum power limited and the frequency spectrum
overcrowded (already making a few megahertz of band-
width worth billions of dollars), Shannon’s expression
does not seem to leave much room for increasing the infor-
mation capacity.

Over the past five years, multiantenna arrays have
increasingly been suggested as a way to stretch Shannon’s
limit.1 The simplest multiantenna array, the “steered
beam” or “phased” array, consists of several individual
antennas that each transmit the same signal but with a
different phase shift. The phase shifts are arranged so
that the different signals interfere constructively in one
direction and destructively in all other directions. This
idea, which dates back to World War II, allows the output
power to be aimed in a particular direction. Furthermore,
one can change this direction electronically just by chang-
ing the phase shifts between the antennas.

At the receiver end, the story is similar. The signals
received from each of the individual antennas can be
summed with different relative phase shifts. With appro-
priately chosen phase shifts, the summed signals can be

made to interfere construc-
tively if the electromagnetic
wave is incident on the
receiving array from a given
angle and to interfere
destructively if the wave is
incident from any other
angle. In this way the receiv-
er can be made to “look” in
an arbitrary direction.

In many real environ-
ments (say, in buildings or
in cities), microwaves with
wavelengths of roughly

10–30 cm (typical for modern wireless devices) are readily
scattered by surrounding objects—walls, desks, cars, and
so on. In the presence of such scatterers, there are a mul-
titude of paths from the transmitter to the receiver. One
might expect that a beam-steering approach would not
work in this situation. However, by using what are known
as intelligent-antenna techniques, one can still obtain an
increase in received power.1 These techniques exploit the
time-reversal symmetry of Maxwell’s equations. Each of
the antennas in an array (at a base station, for example)
measures the relative phase and amplitude of the signal
arriving from a particular source (such as a cell phone),
then transmits with the same relative amplitude but with
the opposite phase. This approach guarantees that all of
the transmitted signals interfere constructively at the
receiver. These intelligent-antenna techniques can even be
used when there is a wide range of time delays resulting
from the differing path lengths from transmitter to receiv-
er. In that case, however, more computational processing
power may be required to calculate the proper signal to
send. Similar time-reversal tricks have been used with
acoustic waves for imaging and other applications (see the
article by Mathias Fink in PHYSICS TODAY, March 1997,
page 34).

Beam steering and intelligent antenna techniques
increase the signal directed toward an intended receiver
and reduce the reception of stray signals intended for
other targets, which appear at the receiver as noise. Over-
all, the relative gain in power obtained from using an
array with M antennas is roughly a factor of M (for fixed
total transmitted power). Although increasing the signal
is certainly desirable, it only increases the information
logarithmically (equation 1). Thus, trying to increase the
bit rate by increasing the signal-to-noise ratio is a game of
rapidly decreasing returns.

In 1995, Gerry Foschini at Bell Labs realized that the
key to beating the log is to exploit scattering.4 The multi-
tude of paths in a scattering environment—while appear-
ing to only complicate matters—turns out to allow for a
much larger information transfer! Very roughly, a differ-
ent signal (a different bitstream) can be sent over each
distinct path between the transmitting and receiving
arrays, thus increasing the information transfer rate
many times. Even more important, Foschini came up with
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a coding and decoding algorithm, now known as BLAST,
that obtains these higher information-transfer rates even
when the details of the scattering environment are not
known. The general idea of sending multiple signals
between multiantenna arrays is known as MIMO (Multi-
ple-Input Multiple-Output). Since BLAST was made pub-
lic in 1996, practically every major telecommunications
company has been vigorously pursuing MIMO technology.
Devices using MIMO will soon hit the market, starting
with antenna systems in indoor wireless local area net-
works (LANs).

It is increasingly clear that multiantenna technology
is going to play an essential role in the wireless commu-
nication of the future. Here we present the important
physics associated with these new technologies.

The MIMO approach
To increase the information rate, we consider sending MT
different bitstreams, one from each of MT transmitting
antennas. If the bitstreams can be decoded at the receiv-
er array, the information transfer rate can become rough-
ly MT times as large as that for single-antenna transmis-
sion (compare equation 1):

(2)

Note that in order to decode the MT separate transmitted
signals, the number of receivers, MR, must be at least as
many as the number of transmitters, MT. The above
expression assumes that the total transmitted power is
kept constant regardless of the number of antennas MT, so
that each of the MT bitstreams is transmitted with power
S/MT. (The intelligent-antenna technique can enhance the
received power of each bitstream by a factor of MR, yield-
ing an effective signal strength of S MR/MT.) Sending MT
different bitstreams can be quite advantageous, since it
gives a factor of MT outside the log, as compared to beam-
steering approaches that only increase the information
transfer rate logarithmically.

Unfortunately, this promising approach only works if
the MT original signals can be unscrambled from the MR

received signals. One case in
which it dramatically fails is
when the propagating micro-
waves do not scatter off any
obstacles—the so-called line-
of-sight case. The problem
here is that if the transmitter
array is far from the receiv-
ing array (the meaning of the
word “far” will be made clear
below), all MR antennas in
the receiving array receive
essentially the same combi-
nation of the MT different
transmitted signals (up to a

global phase shift). It is then impossible to distinguish the
MT individual transmitted signals. Thus, beam steering
remains the best approach in the line-of-sight case.

This situation can be understood by simple optics. In
order for the receiver to “see” that distinct signals are
being transmitted from the distinct transmitting anten-
nas, it must be able to resolve a geometric angle of less
than a ⊂ LT/d, where LT is the size of the transmitting
array and d is the distance between the transmitting and
receiving arrays. However, if we think of the receiver as a
lens whose aperture is its size LR, its diffraction-limited
angular resolution is a ⊂ l/LR, where l is the wavelength.
Thus, if l/LR � LT/d, which is almost always true for cell-
phone systems, it is impossible for the receiver to resolve
the individual transmitted signals.

Why scattering helps
The presence of scatterers in the environment effectively
increases the aperture of the lens that looks at the trans-
mitting array. In other words, the scatterers act as a large
complex lens that allows the receiving array to distin-
guish the several different signals from a relatively small
transmitter array. It is critical that, in the presence of
scattering, the receiver gets power from a wide range of
directions, so that the finite angular resolution of the
receiver does not create a limitation.

As a simple example, imagine two transmitting and
two receiving antennas, and consider the case, shown in
figure 1, where there are two distinct paths from the
transmitter to the receiver array: one that is along the
line of sight and one that bounces off a scatterer. Generi-
cally, the outputs of the two receiving antennas are two
different linear combinations of the signals arriving from
the two directions. Similarly, the signals from the two
directions are two different linear combinations of the
inputs to the two transmitting antennas. Thus the out-
puts are independent linear combinations of the inputs, so
the inputs can be deduced from the outputs. Therefore, if
two different bitstreams are sent by the transmitting
antennas, the receiver will be able to unscramble them. As
discussed above, being able to receive two distinguishable
bitstreams essentially doubles the transferred informa-
tion capacity. More generally, if there are M distinct paths
from the transmitting to the receiving array, and there
are at least M transmitters and M receivers, then the
capacity may be increased M times. (The maximum num-
ber of fully independent paths that can exist in a scatter-
ing environment turns out to be related to the length of
time the radiation remains confined in that environment
before escaping or being absorbed.5)

Another way to understand this increase in capacity
is to think in terms of phased-array techniques. With
appropriately phased inputs to the transmitting antennas,
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FIGURE 1. SCATTERING ENHANCES INFORMATION transfer
rates. In the absence of scattering, both receiving antennas see
the same linear combination of the two transmitted signals.
Thus it is impossible to distinguish the separate transmitted
signals. In the presence of the scatterer, a second linear combi-
nation is also received. If the antennas are at slightly different
spatial positions, an inverting linear transformation can be
used to determine the two different transmitted signals. With
two independent signals communicated simultaneously, the
information transfer rate is roughly doubled.



40 SEPTEMBER 2001    PHYSICS TODAY http://www.physicstoday.org

the transmitter can beamsteer one bit-
stream in one direction (along the line-of-
sight path), or beamsteer another bit-
stream in a different direction (toward the
scatterer). By summing the inputs for
these two cases (by the superposition prin-
ciple), the transmitter will simultaneously
send one bitstream along one direction and
the other bitstream in the other direction.
Similarly, two different combinations of
the received outputs with appropriate
phases will give the incoming signals from
the two different directions. Thus each of
the two bitstreams can literally be sent
over each of the two different paths and be
independently received.

Multiantenna information theory
To the information theorist, communica-
tion is reduced to a mathematical problem.
For MT different transmitters i ⊂ 1 . . . MT
with inputs Ti, and MR different receivers
j ⊂ 1 . . . MR, we can write the received sig-
nal (the output) Rj at the jth receiver as

(3)

where Nj is the noise at the jth receiver,
and Gji is one element of the so-called prop-
agation matrix or Green’s function. Gji tells
how much of the output signal from receiv-
er j comes from transmitter i (along with
the appropriate phase). It can be shown
(under certain conditions) that, given a
propagation matrix G, the maximum infor-
mation transfer rate is given by3,4

I ⊂ Tr log2(1 ⊕ G†G/N )
⊂ log2 det(1 ⊕ G†G/N ) bits s–1 Hz–1, (4)

with N the noise power, 1 the unit matrix,
Tr the trace, and det the determinant.
Here, G†G is the matrix equivalent of the
signal power S in the single-antenna case
(equation 1).

To a physicist, the more interesting
part of the problem is the nature of the
physical propagation—which in turn
determines the information capacity. The
challenge then becomes understanding the
properties of the propagation matrix G in a
complex scattering environment.

With “sufficient” scattering, one hopes
that all of the receiving antennas get lin-
early independent combinations of the
transmitted signals, so that it is, in princi-
ple, possible to deduce the values of Ti
from equation 3 (either by inverting the
matrix G or performing a “pseudoinverse”
if G is not invertible6). If the received sig-
nals are indeed linearly independent, the
information capacity should be roughly
given by equation 2. (The prefactor of MT
in equation 2 comes from the MT different
terms in the trace of equation 4.) However,
the condition of linear independence is not
always met; its satisfaction depends on
both the environment and the antennas.

Information Theory for Physicists

In 1948, when Claude Shannon mathematically analyzed the question of how
much information can be conveyed through a noisy communication chan-

nel, he uncovered a close analogy between this information and the notion of
entropy. The analogy is roughly as follows:

Imagine a transmitter sends us a signal, which is some real number amplitude
A that we receive with some noise or uncertainty dA. The transmitter would like
to send us a message. We might agree in advance to use the code at left, with Amax

the maximum value of the signal A. With
this code, the transmitter can send 2 bits, or
4 different symbols. This code works per-
fectly well provided that the noise (or uncer-
tainty) dA is less than roughly Amax/4. If the
uncertainty is greater than this amount, then
we won’t be able to tell which symbol is
intended and the code fails. Roughly, the

total number of different symbols one can successfully send is given generally by

Amax/dA � “Signal”/“Noise”.

The analogy to statistical mechanics is

Number of Distinguishable Symbols � Number of States of the System.

To draw the analogy further, the number of bits that can be sent is analogous
to the entropy:

Bits ⊂ log2(Number of Symbols) � Entropy ⊂ log(Number of States).

Shannon put these statements on firmer mathematical footing by proving
the following theorem:2

If a receiver receives complex amplitudes chosen from a Gaussian
distribution of variance S and complex noise from a Gaussian dis-
tribution of variance N, then the maximum error-free information
that can be decoded by this receiver per received amplitude is

Bits of Information ⊂ log2[(S ⊕ N )/N].

This expression contains (S ⊕ N )/N rather than S/N because the information
should vanish when S ⊂ 0. If we are allotted a frequency bandwidth B to trans-
mit our signal, then in a time T we can send TB different amplitudes. Equation
1 in the main text then follows, giving the information capacity measured in
bits per second per hertz of bandwidth.

One might be concerned that, in a scattering environment, signals may
arrive with different time delays (that is, there may be multiple echoes), lead-
ing to confusion—and hence lower capacity—at the receiver. This, however, is
not necessarily true. The existence of distinguishable echoes can only occur
when the speed of changing (modulating) the signal is faster than the echo
delays—that is, when the delay time is greater than 1/B. Thus, if one transmits
with a very narrow bandwidth, the communication is immune to these echoes.
To take advantage of a wider available bandwidth, one must send different sig-
nals on each of many narrow frequency bands.

In the case where there are several transmitters and several receivers, Shan-
non’s formula is generalized to
equation 4 of the main text.
This expression can be derived
quite analogously to the above
argument. The question to be
asked is always “How many
distinguishable signals can be
sent from transmitter array to
receiver array?” For two
receivers, one might consider a
code that looks like the one at
right. This code would allow us
to send 16 symbols or 4 bits,
provided again that the noise is
less than Amax/4. Thus, with
fixed noise and fixed maximum signal amplitude, one can send roughly twice as
many bits from two pairs of transmitting and receiving antennas as with one
transmitting and one receiving antenna.
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For example, the assumption fails if two receiving anten-
nas are placed right on top of each other. In this case, the
two antennas receive precisely the same electromagnetic
field, and one of them becomes redundant. (Mathemati-
cally, they are receiving linearly dependent signals—we
would say that G is not of full rank, or is not invertible.)
It is then impossible to determine the individual trans-
mitted signals. Another situation in which G is not of full
rank is the line-of-sight case discussed above.

More generally, the receiving antennas may receive
correlated (that is, similar) signals, so that although G
may be invertible, the inversion procedure is very sensi-
tive to noise. In this case, the information transfer rate is
lower than if the antennas were completely independent,
but higher than if the antennas were receiving precisely
the same signal. It is thus essential to determine how cor-
related the received signals are for any given antenna
array in any particular environment. This determination
requires properly understanding microwave propagation
in a scattering environment.

Application of mesoscopia
Although at some level all radio propagation reduces to
Maxwell’s equations, the complexity of real environments
makes a complete solution impossible, even numerically,
for all but the simplest cases. Even if we were able to solve
Maxwell’s equations for a particular environment, the
solution would change completely as soon as the environ-
ment changed. In reality, environments change all the
time—the antennas may be moving around (on a mobile
phone) or scatterers may be changing positions (cars driv-
ing past the antennas). Thus, calculating the precise prop-
agation matrix G may not be as useful as asking about the
statistical properties of G: What is a “typical” G? What
distributions of G’s can occur?

These questions are quite similar to those that arise
in mesoscopic physics. In the case of mesoscopic disor-
dered metals, we can successfully predict how certain
quantities—conductivity or magnetization, for example—
vary from one disordered sample to the next. Instead of
trying to precisely describe the detailed properties of a
particular sample, we study the properties of an ensemble
of samples that is fully described by a few parameters,
such as the mean free path and the decoherence rate.
Analogously, it is useful to describe microwave propaga-

tion in a scattering environment in terms of the properties
of an ensemble of environments with a few input parame-
ters, such as the mean free path and the absorption
length.

Over the years, the analogy between mesoscopic
physics and electromagnetic radiation has provided fertile
ground for cross-pollination. Ideas about wave interfer-
ence, which were developed first in the context of meso-
scopics, were later pursued intensely in the field of wave
propagation. The great flexibility of microwaves as an
experimental system allowed for many detailed studies of
wave propagation in disordered media.5,7,8 In thinking
about propagation for wireless communications, the anal-
ogy to mesoscopia again turns out to be very useful.

As in the case of disordered mesoscopic systems, one
can construct a Boltzmann equation for propagation of
microwaves9 analogous to the Boltzmann equation for
propagation of electrons. This is just a partial differential
equation for the probability density f (r, k) for having
microwaves at position r moving in direction k.
Microwaves traveling in a given direction k are assumed
to have some probability per unit time, denoted by the
scattering matrix element V(k, k��), of being scattered to
another direction k��. In many cases, the Boltzmann equa-
tion can be further reduced to a simple diffusion equation
for microwaves.

An important question in wireless communications is,
“If you transmit a given power at one arbitrary point, how
much power arrives at another arbitrary point?” The
Boltzmann approach answers this question with reason-
able accuracy, as shown in figure 2. More important, it
gives a simple analytical framework within which to
understand propagation problems.

This approach can also address the question of fluc-
tuations in the received power. If you move the receiver
from one point to another nearby point, how much will the
received power change? It turns out that the received
power fluctuates strongly as a function of position. This
behavior is analogous to the phenomenon of laser speckle:
In both cases, there is a coherent field that is scattered
randomly and can interfere with itself either construc-
tively or destructively. Typically, one needs to move the
receiver a distance of about half a wavelength to go from
a region of constructive to destructive interference. Since
the phase of a wave changes by p in a distance l/2, the

FIGURE 2. DIFFUSIVE MODEL of
microwave propagation within a build-
ing (left), compared to experimental
measurements (right). The transmitter is
shown as the blue dot, and the color at a
given point represents the log of the
received power at that point (yellow is
high power, dark red is low power). In
the experiments, power was only meas-
ured along the colored lines. The results
of the diffusive modeling (courtesy of
Denis Ullmo and Harold Baranger; see
also ref. 9) make very accurate predic-
tions for the amount of power that is
received at a given point. The experi-
mental data (courtesy of Reinaldo
Valenzuela and Orlando Landron; see
also ref. 13) were taken for a study of
how to optimize the deployment of base
stations for wireless local area networks.
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electric field—which is the sum of contributions of waves
coming in randomly from all directions—will change com-
pletely in roughly this distance. Conversely, any two
points within half a wavelength of each other have highly
correlated electric fields. Measurements5,7,10 of these cor-
relations have been consistent with Boltzmann (or diffu-
sive) modeling, as shown in figure 3. Properly under-
standing such correlations is critical for multiantenna
technology, since the capacity is increased only if the
antennas receive uncorrelated signals.

To make these statements about correlations more
quantitative, we need to ask specific questions about the
properties of the propagation matrix G. Since G depends
on the particular environment, we really need to ask
about the entire distribution of possible G’s that can occur.
Mathematically, we can describe this distribution in
terms of correlation functions—such as ∀Gij¬ or ∀GijG*

kl¬,
where the brackets mean an ensemble average over dis-
order configurations. For many situations in which scat-
tering occurs, ∀Gij¬ is zero. However, in general ∀GijG*

kl¬ is
nonzero. Often, this second-order correlator is sufficient to
describe the distribution of G. It turns out that the corre-
lation function ∀GijG*

kl¬ is analogous in mesoscopic systems
to a conductivity or response function, which is also the
average of two Green’s functions. Therefore, one can
exploit the machinery developed for electronic systems to
calculate the properties of G.

Once we know the statistics of G, we may ask, “What
is the average information capacity I?” Here, the analogy
between information theory and statistical mechanics can
be exploited. In statistical mechanics, one often wants to
calculate the ensemble average of the log of the partition
function. In information theory, we want the ensemble
average of the log of a quantity (the determinant in equa-
tion 4) that counts the number of states of the system.
Making this mapping, one can then use powerful physics
techniques, such as random matrix theory, to calculate
information capacities.11 Such calculations are in good
agreement with experiment.10

Polarization and directional diversity
As we have seen, in a scattering environment, the electric
fields at two points are highly correlated if the points are
within half a wavelength. Because we want our antennas
to receive uncorrelated signals, we might guess that the
antennas should be spaced by this distance, which limits
the number of independent antennas that can be put on a
small device. Still, we would like to use as many inde-
pendent antennas as possible to increase the information
throughput. This apparent conflict can be circumvented
by several tricks that allow small devices to carry more
antennas.

One proposed approach exploits the multiple polar-
izations of electromagnetic radiation. With line-of-sight
transmission (say, in the x direction), there are two polar-
izations (y-polarized and z-polarized) that can be used to
send two different messages. Unfortunately, since radia-
tion must be polarized perpendicular to its propagation
direction, one cannot use x-polarized light to send a sig-
nal by line-of-sight in the x direction. However, as shown
in figure 4, by bouncing the signal off a scatterer that is
far away from the line-of-sight path, one can use the x
polarization to send an additional independent signal.
Surprisingly, if there is enough scattering in the environ-
ment, the three electric and three magnetic polarizations
can be transmitted and received independently, allowing
the sending of six signals via six different polarizations.12

One can use this “polarization diversity” to pack up to six
independent antennas into a very small region. (This pre-
diction has yet to be verified experimentally because, in
practice, it is hard to make small yet sensitive magnetic
antennas at cell-phone frequencies.) One might be sur-
prised that the magnetic and electric fields are independ-
ent, since from Maxwell’s equations, E ⊂ B × k. Howev-
er, such a relation holds only for a single plane wave. If
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FIGURE 3. MICROWAVE CORRELATIONS in a scattering envi-
ronment. (a) Experimentally received microwave power plot-
ted as a function of position (red is high power, black is low
power). Waves traversing different paths interfere to form a
speckle pattern. The size of a single speckle (the field correla-
tion length) is of the order of half a wavelength l/2 (here
l 	 12 cm). (b) Magnitude of the correlation of signals
received by two antennas as a function of the distance between
them, averaged over antenna position and orientation. With
omnidirectional antennas (red), the correlation increases with
decreasing separation, as might be expected from (a). The black
line is the expected field correlation function in an isotropic
diffusive environment,8 +sin(2px/l)/(2px/l)+, which is quite
similar to the experimental results of the omnidirectional
antennas. But with oppositely facing directional antennas
(blue), the correlation stays low even at small separation. For
both (a) and (b), transmission was from a single antenna 8–10
m away. (Adapted from ref. 10.)



there are multiple waves incident from different direc-
tions, then the sum of the electric fields and the sum of
the magnetic fields will be linearly independent.

Another approach that can be used in a highly scatter-
ing environment is known as directional diversity. In this
approach, one uses a set of antennas that each preferen-

tially see waves coming in from a cer-
tain direction. If each antenna is look-
ing in a different direction, the received
signals will be independent (see figure
3b) even if the antennas are placed
very close together, as in figure 5. Cur-
rently, it is still not clear whether there
is a fundamental limit to how many
independent antennas can be squeezed
into a given small volume.

The above approaches are two
efficient ways for antennas to exploit
independent modes of incoming or
outgoing radiation. Such strategies
may be extremely valuable for the

technology of the future. Whether these particular
approaches are actually used on cell phones will depend
on many engineering considerations. One thing, however,
is certain: The wireless communication industry is grow-
ing at an astounding rate, and physics will be playing an
essential role in its future. Thinking about multiantenna
wireless communication from a physics-based perspective
has brought new insight and has already uncovered a
number of surprises. Nonetheless, the field is still young
and many more surprises are likely still to come.

Many researchers at Lucent Technologies and at Agere Sys-
tems are involved in wireless research of the type described in
this article. Much of our knowledge of the subject is due to our
interactions with these people. In particular we would like to
acknowledge Gerry Foschini, Mike Gans, Mike Andrews,
Partha Mitra, Rich Howard, and Peter Gammel. Special
thanks are due to our collaborators: Harold Baranger, Anir-
van Sengupta, and Leon Balents.
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FIGURE 5. COMPACT ANTENNA ARRAY. This prototype array
contains four antennas and has an overall size of less than a
third of a wavelength. Despite the small size of the array, the
individual antennas operate independently due to their direc-
tional diversity: In essence, each of these antennas “looks” in 
a different direction. Such compact antenna arrays may be 
useful for achieving high information transfer rates in small
wireless devices. In a sufficiently rich scattering environment
(such as indoors, or in a city), transmission between two sets
of these compact antennas can achieve an information transfer
rate almost four times larger than single-antenna to single-
antenna transmission.
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FIGURE 4. TRIPOLE ANTENNAS transmitting and receiving sig-
nals in the presence of a single scatterer. In the absence of the
scatterer, only the y-polarized (blue) and z-polarized (red) signals
would be received. The presence of the scatterer allows for the
additional reception of x-polarized signal (green). The result is
general, independent of how the tripole antennas are rotated:
Without scattering, only two independent signals can be sent
from transmitter to receiver; with scattering, a third polarization
can be used. (Although not shown, the y- and z-polarized signals
also are partially transmitted through the scatterer.) The inset
shows a prototype tripole antenna made of three orthogonal
half-wavelength dipoles. (Adapted from ref. 12.)
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