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G
ravity dominates the large-scale
structure of the universe, but only

by default, so to speak. Matter
arranges itself to cancel electromag-
netism, and the strong and weak
forces are intrinsically short range. At
a more fundamental level, gravity is
extravagantly feeble. Acting between
protons, gravitational attraction is
about 10–36 times weaker than electri-
cal repulsion. Where does this out-
landish disparity come from? What
does it mean?

These questions greatly disturbed
Richard Feynman. His famous paper
on quantizing general relativity,1 in
which he first described his discovery
of the “ghost particles” that eventual-
ly played a crucial role in under-
standing modern gauge field theories,
begins with a discussion of the small-
ness of gravitational effects on sub-
atomic scales, after which he con-
cludes,

There’s a certain irrationality to
any work on [quantum] gravita-
tion, so it’s hard to explain why
you do any of it. . . . It is there-
fore clear that the problem we
[are] working on is not the cor-
rect problem; the correct prob-
lem is: What determines the
size of gravitation?

The same question drove Paul Dirac2

to consider the radical idea that the
fundamental “constants” of nature
are time dependent, so that the weak-
ness of gravity could be related to the
great age of the universe, through the
following numerology: The observed
expansion rate of the universe sug-
gests that it began with a bang rough-
ly 1017 seconds ago. On the other
hand, the time it takes light to tra-
verse the diameter of a proton is
roughly 10–24 seconds. Squinting
through rose-colored glasses, we can
see that the ratio, 10–41, is not so far
from our mysterious 10–36. (For what
it’s worth, the numbers agree better if
we compare gravitational attraction
versus electrical repulsion for elec-
trons, instead of protons.) But the age
of the universe, of course, changes

with time. So if the numerological
coincidence is to abide, something
else—the relative strength of gravity,
or the size of protons—will have to
change in proportion. There are pow-
erful experimental constraints on
such effects, and Dirac’s idea is not
easy to reconcile with our standard
modern theories of cosmology and
fundamental interactions, which are
tremendously successful.

In this column, I show that today
it is natural to see the problem of why
gravity is extravagantly feeble in a
new way—upside down and through a
distorting lens compared to its super-
ficial appearance. When viewed this
way, the feebleness of gravity comes to
seem much less enigmatic. In a
sequel, I’ll make a case that we’re get-
ting close to understanding it.

First let’s quantify the problem.
The mass of ordinary matter is domi-
nated by protons (and neutrons), and
the force of gravity is proportional to
mass squared. Using Newton’s con-
stant, the proton mass, and funda-
mental constants, we can form the
pure dimensionless number

N ⊂ GNmp
2 /\c,

where GN is Newton’s constant, mp is
the proton mass, \ is Planck’s con-
stant, and c is the speed of light. Sub-
stituting the measured values, we
obtain

N � 3 × 10–39.

This is what we mean, quantitatively,
when we say that gravity is extrava-
gantly feeble.

We can interpret N directly in
physical terms, too. Since the proton’s
geometrical size R is roughly the same
as its Compton radius, \/mpc, the
gravitational binding energy of a pro-

ton is roughly GN mp
2 /R � Nmpc2. So N

is the fractional contribution of grav-
itational binding energy to the pro-
ton’s rest mass!

Soon after Max Planck introduced
his constant \ in the course of a phe-
nomenological fit to the blackbody
radiation spectrum, he pointed out
the possibility3 of building a system of
units based on the three fundamental
constants \, c, and GN. Indeed, from
these three we can define a unit of
mass (\c/GN)1/2, a unit of length
(\GN /c3)1/2, and a unit of time
(\GN /c5)1/2—what we now call the
Planck mass, length, and time,
respectively. Planck’s proposal for a
system of units based on fundamental
physical constants was, when it was
made, formally correct but rather
thinly rooted in fundamental physics.
Over the course of the 20th century,
however, his proposal became com-
pelling. Now there are profound rea-
sons to regard c as the fundamental
unit of velocity and \ as the funda-
mental unit of action. In the special
theory of relativity, there are symme-
tries relating space and time—and c
serves as a conversion factor between
the units in which space intervals and
time intervals are measured. In quan-
tum theory, the energy of a state is
proportional to the frequency of its
oscillations—and \ is the conversion
factor. Thus c and \ appear directly as
primary units of measurement in the
basic laws of these two great theories.
Finally, in general relativity theory,
spacetime curvature is proportional to
the density of energy—and GN (actu-
ally 1/GN c4) is the conversion factor.

If we accept that GN is a primary
quantity, together with \ and c, then
the enigma of N’s smallness looks
quite different. We see that the ques-
tion it poses is not, “Why is gravity so
feeble?” but rather, “Why is the pro-
ton’s mass so small?” For in natural
(Planck) units, the strength of gravi-
ty simply is what it is, a primary
quantity, while the proton’s mass is
the tiny number =++N.

That’s a provocative and fruitful
way to invert the question, because
we’ve attained quite a deep under-
standing of the origin of the proton’s
mass, as I discussed in an earlier col-
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umn (PHYSICS TODAY, November
1999, page 11). The lion’s share of the
proton’s mass can be accounted for in
an approximation to quantum chro-
modynamics (QCD), where all the rel-
evant particles—gluons, and up and
down quarks—are taken to be mass-
less. In that earlier column, I dis-
cussed this in conceptual terms; now
let’s look under the hood.

The key dynamical phenomenon is
the running of the coupling (see my
article, “QCD Made Simple,” PHYSICS
TODAY, August 2000, page 22). Look-
ing at the classical equations of QCD,
one would expect an attractive force
between quarks that varies with the
distance as g2/r2, where g is the cou-
pling constant. This result is modi-
fied, however, by the effects of quan-
tum fluctuations. The omnipresent
evanescence of virtual particles ren-
ders empty space into a dynamical
medium, whose response alters the
force law.

In QCD, the antiscreening effect of
virtual color gluons (asymptotic free-
dom) enhances the strength of the
attraction by a factor that grows with
the distance. This effect can be cap-
tured by defining an effective cou-
pling, g(r), that grows with distance.
The attractive interaction among
quarks wants to bind them together,
but the potential energy to be gained
by bringing quarks together must be
weighed against its cost in kinetic
energy. In a more familiar application,
just this sort of competition between
Coulomb attraction and localization
energy is responsible for the stability
and finite size of atoms.4 Here, quan-
tum-mechanical uncertainty implies
that quark wavefunctions localized in
space must contain a substantial
admixture of high momentum, which
translates directly, for a relativistic
particle, into energy. If the attraction
followed Coulomb’s law, with a small
coupling, the energetic price for stay-
ing localized would always outweigh
the profit from attraction, and the
quarks would not form a bound state.
But the running coupling of QCD
grows with distance, and that tips the
balance. The quarks finally get reined
in at distances where g(r) becomes
large.

The mechanism leading to this
binding dynamics explains the “coin-
cidence,” noted above, that the geo-
metric size of the proton is close to its
Compton radius. That is because a
substantial portion of its formation
energy, from which its mass arises as
mp ⊂ E/c2, is associated with the
momenta of order p � \/R, required
for the quarks’ localization, through

E ⊂ pc. Simple algebra then yields
R � \/mpc. But really no detailed cal-
culation was required to reach this
conclusion. Since only the broadest
principles of special relativity and
quantum mechanics come into the
dynamics, the relationship follows by
dimensional analysis.

Thus the proton mass is deter-
mined by the distance at which the
running QCD coupling becomes
strong. Let’s call this the QCD dis-
tance. Our question, “Why is the pro-
ton mass so small?” has been trans-
formed into the question, “Why is the
QCD distance much larger than the
Planck length?” To close our circle of
ideas, we need to explain how, if only
the Planck length is truly fundamen-
tal, this vastly different length can
arise naturally.

This last elucidation, profound and
beautiful, is worthy of the problem. It
has to do with how the coupling runs.
When the QCD coupling is weak,
“running” is a bit of a misnomer. Actu-
ally the coupling creeps along, like a
wounded snail. To be precise (and we
can in fact calculate the behavior pre-
cisely, following the rules of quantum
field theory, and even check it out
experimentally5), the inverse coupling
varies logarithmically with distance.
As a result, the distance will need to
change by many orders of magnitude
for a moderately weak coupling to
evolve into a strong one. So, finally, all
we require to generate our large QCD
distance dynamically is that, at the
Planck length, the QCD coupling is
moderately small (between a third
and a half of what it is observed to be
at 10–15 cm). From this modest and
innocuous starting point, by following
our logical flow upstream, we arrive
at the tiny value of N, which at first
sight seemed so absurd.

I’ve explained how the ridiculously
feeble appearance of gravity is consis-
tent with the idea that this force sets
the scale for a fundamental theory of
nature. But does it? Stay tuned.
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