even more rapidly in the intervening years.) There had also been a very lively meeting on BEC in Trento, Italy, in 1993, where the challenges and opportunities for studies of degenerate, weakly interacting gases had been discussed. Moskalenko and Snoke state, in the introduction to their book, that they had met at this meeting and decided then to write a systematic text on the subject of BEC in excitons and biexcitons. They have succeeded in an admirable fashion, producing an excellent text for graduate students and experienced workers in the field.

The book contains a thorough introduction to all aspects of condensed matter physics, combined with much of the formal theory required to understand a wide range of experiments. Potential readers should, however, equip themselves with a decent background in general quantum field theory in order to make best use of the text. The authors provide accounts of the more specialized theory needed for excitons and their dynamics in the presence of laser driving and relaxation.

The complex relaxation processes seen in exciton systems are described in detail using the Keldysh formalism for nonequilibrium systems. Knowledge of the Keldysh formalism is essential for workers in the field and yet is spread across the literature. The book is, therefore, especially welcome, being a most useful single source for this material as well as a well-written explanation of many important points for the field. The book has a good and rarely encountered balance between formal theory and analysis of specific cases in which experimental data are available.

Excitons behave as composite bosons only at sufficiently low densities. As the density of an excitonic gas is increased, the physics we see becomes that of an electron—hole plasma, an important subject in its own right. The book gives a good account of this link along with a survey of the relevant literature, which helps greatly in placing the subject properly in the context of condensed matter research as a whole.

One of the most interesting phenomena that the text describes is the production of coherent pulses of excitons. One can study the propagation of such pulses and even look at their nonlinear optics. The nonlinear interaction can be used to squeeze the field of the coherent excitons, just as light fields are squeezed by a nonlinear interaction. The ways in which such coherent beams of excitons can be

used in other areas of science and technology are a matter of intense study at present.

KEITH BURNETTOxford University
Oxford, England

Dynamics of Galaxies

Giuseppe Bertin Cambridge U. Press, New York, 2000. \$95.00, \$34.95 paper (414 pp.). ISBN 0-521-47262-8, ISBN 0-521-47855-3 paper

Giuseppe Bertin's Dynamics of Galaxies is an elucidating account of a graduate course given by Bertin over the past two decades. It begins with a brief summary of galaxy morphology and kinematics and continues with a detailed theoretical description of spiral and elliptical galaxies. There is considerable discussion of the rationales for various mathematical approaches. including his own asymptotic and semiempirical models for spiral wave theory. Bertin also points out similarities between galaxy dynamics and other branches of physics such as fluid flow, plasma physics, and electrodynamics. Many of his descriptions are particularly good for beginning graduate students: his chapter on dispersive waves, for example. Each chapter includes thought-provoking questions.

The chapters on spiral density waves, modes, and spiral structure are similar in content and layout to Bertin's monograph with C. C. Lin, Spiral Structure in Galaxies: A Density Wave Theory (MIT Press, 1996), with an expanded discussion of the modal theory based on the author's work in the 1980s. Those chapters are the strongest sections of the book, emphasizing Bertin's belief that "a study based on quasi-stationary spiral structure supported by intrinsic global modes gives a natural description of the observed large-scale [spiral] patterns and leads to a successful unified framework for the interpretation of the morphological categories of galaxies." This interpretation partially reflects the limited range of solutions provided by existing analytical theory and symmetry assumptions; a much larger range of processes is thought to occur in real galaxies. For example, numerical models of galaxies, which are dismissed in this book as inherently limited, show a rich collection of additional phenomena that are not discussed here, including Alar Toomre's spiral chaos from local instabilities; bar formation, stability, and dissolution; and tidal interactions. Nonlinear resonances between waves

with different pattern speeds are also not discussed, although some galaxies, particularly those with bars, appear to have these resonances. Also omitted are purely gaseous processes, including star formation and turbulence, which produce realistic structures in numerical models.

The concentration on modal theory to the exclusion of more recent work limits the utility of this book for the general student. Other omissions are noteworthy too: In an observational section on new and future satellites, the most recent members of the great observatories, the Chandra x-ray telescope and the Space Infrared Telescope Facility, are not mentioned. The primary reference given for stellar population synthesis models is Reynier Peletier's 1989 Groningen PhD thesis, but not the more recent and commonly used compendium by Claus Leitherer et al., called "Starburst 99," which is freely available on the Web at http://coaticook.stsci.edu. In his section on classification systems, the author discusses the Hubble system and the Luminosity Class, but not the modification by Gerard de Vaucouleurs, which includes the important oval type SAB. The de Vaucouleurs system is the basis for the primary reference tabulation of important galaxy data, the Third Reference Catalogue of Bright Galaxies. Bertin also makes comments that might be obscure to someone new to the field. such as his saving that the 7 in an E7 galaxy comes from the observed aspect ratio of 3:1, rather than explaining that it comes from the expression 10(1-b/a) = 7 for ratio of axes b/a = 1/3.

The other major text on this topic is James Binney and Scott Tremaine's Galactic Dynamics (Princeton U. Press, 1987). Bertin's book has more thorough explanations and derivations for much of the mathematics, particularly regarding the modal theory of spiral structure, and it has more recent material in some fields, such as dark matter in elliptical galaxies. But the scope in Binney and Tremaine is more comprehensive and the mathematics better trimmed for easy use. The two books evidently serve different purposes. Binney and Tremaine serve the interests of the general student, whereas Bertin's book is particularly useful for students interested in mathematical methods of galactic dynamics. Bertin's comparisons between galactic dynamics and plasma physics are also innovative and illustrative.

DEBRA ELMEGREEN
Vassar College
Poughkeepsie, New York
BRUCE C. ELMEGREEN
IBM T. J. Watson Research Center
Yorktown Heights. New York