ing its resolving power to 135 meters.

The light from the two telescopes is collected in an underground tunnel for analysis. In that tunnel, a series of mirrors is adjusted so that the optical paths at the midpoint are equal to within a nanometer. Tests on the Lynx star reveal that the linked telescopes can accurately track the star for as long as 10 seconds.

Many of the techniques used with the Keck interferometer were adapted from the Palomar Testbed Interferometer in California, says Mark Colavita of NASA's Jet Propulsion Laboratory. "We're all pretty excited to have met this milestone."

Testing will continue for the next several months. Limited scientific research, including the search for extrasolar planets, is expected to begin this fall. PAUL GUINNESSY

Faculty Retirements, Recruitments Rise

The fabled flood of physics faculty retirements is turning out to be more of a trickle, according to the latest academic workforce survey conducted by the American Institute of Physics. In 1999, the retirement rate topped 3% for the first time; despite increases in deferred retirements, it should continue to increase slowly over the next decade.

Recruitment for physics faculty has also been increasing. An estimated 41% of physics departments were looking to hire tenured or tenure-track faculty for 2001, up from 34% in 1999. Of course, academic recruitment is a complicated business, and positions can take years to fill, or have their funding cut before a suitable candidate is found. Still, the proportion of departments that actually hired new tenured or tenure-track faculty jumped to 35% in 2000, after hovering around 25% in recent years.

Despite the rise in the total number of new hires, the fraction of jobs going to women fell. Only 14% of academic physicists hired in 2000 were women, down from 17% in 1998. What did increase was the number of new hires that earned their PhDs outside the US—they now make up more than a third of the new full-time faculty at PhD-granting departments.

The 2000 Physics Academic Workforce Report is available free from the American Institute of Physics, Statistical Research Center, One Physics Ellipse, College Park, MD 20740-38442; Email: stats@aip.org; Web: http://www.aip.org/statistics/ trends/emptrends.htm.

High-School Physics Student Bags Two Competitions

Mariangela Lisanti, a 17-year-old high-school student from West-port, Connecticut, won first prize in a science competition last December for her project "Conductance Quantization in Gold Nanocontacts," taking home a \$100 000 college scholarship. Then, in March, she did it again.

Lisanti received first prize both in the Siemens Westinghouse Science and Technology Competition and in the Intel Science Talent Search—garnering a total of \$200 000 in prize money—for a device that measures voltage across nanowires. Her device, which may be useful in the development of miniature electronics, is made largely from parts available at the local electronics store. It cost only \$35, much less than similar existing commercial products.

Intel has sponsored the 60-year-old science talent search since 1998, when it took over from Westinghouse, the original sponsor of the competition. That same year, Siemens, which bought the Westinghouse power generation business, decided to start a competition of its own. Both contests invite independent original research from US high-school students. But unlike the Intel competition, which is open to all fields, the Siemens competition focuses on the hard sciences, includes team entries, and judges students solely on

LISANTI struck it rich with her project measuring the conductance of gold nanowires.

their projects rather than their overall academic potential.


The prize money has risen substantially in the past couple of years—combined, the two competitions now give out more than \$1.5 million annually. Top scholarships awarded in the Intel competition have more than quadrupled in value over the past 10 years. In an effort to increase participation—about 2000 students took part in the two competitions—Intel now gives each of its 300 semifinalists and their schools prizes worth \$1000. And the 40 finalists in the Intel competition each receive a laptop computer.

LYNLEY HARGREAVES

Web Watch

http://www-spof.gsfc.nasa.gov/stargaze/Sintro.htm

Orbital and Newtonian mechanics, solar physics, and space flight are the topics covered by David P. Stern in his educational Web site From Stargazers to Starships. Stern, a space physicist from NASA's Goddard Space Flight Center, puts each lesson in its historical context and provides all the necessary mathematical background. The entire site is also available in Spanish.

$http://depts.washington.edu/hssexec/library_list.html$

On behalf of the History of Science Society's education committee, A. Bowdoin van Riper has compiled **Reading the History of Western Science**, a list of about 100 books that he believes offer particularly effective introductions to the history and sociology of science.

http://vis.lbl.gov

The goal of the **Visualization Group** at Lawrence Berkeley National Laboratory is to help scientists view and better understand complex multidimensional data. Diverse and interesting examples of the group's work are listed on its Web page under the "Projects" link.

To suggest topics or sites for Web Watch, please e-mail us at ptwww@aip.org.

Compiled by CHARLES DAY