decommissioned," says Astbury.

TRIUMF survived by diversifying: In addition to core programs using its cyclotron and smaller facilities, the lab now provides components for CERN's Large Hadron Collider, facilitates Canadian research at foreign laboratories, and has built the Isotope Separator Accelerator (ISAC), a linear accelerator that produces intense beams of short-lived exotic nuclei.

ISAC, along with the growing number of radioactive beam facilities worldwide (see PHYSICS TODAY, May 1997, page 17), is opening up the study of unstable nuclei in nuclear astrophysics. "What's important in this area is to understand the energy involved in cataclysmic events like supernovae," says Shotter. "We have to know how unstable nuclei react with things like hydrogen and helium."

Applications for radioactive beams may also be found in nuclear physics, condensed matter physics, engineering, and biological research, says Shotter. "There is a lot of exciting potential here, but until we actually have intense beams of radioactive nuclei, this potential will remain speculative."

LYNLEY HARGREAVES

NEWS NOTES

Surveying physics. What will be the hottest areas of physics in the next decade? Quantum technologies, complex systems, biophysics, new materials, cosmology, and high-energy physics are the six areas identified as priorities in Physics in a New Era: An Overview.

The report, out this month, is the culmination of a survey by the National Research Council, which over the past five or so years has published a series of field-specific reports. Physics in a New Era: An Overview looks not just at physics research in the US, but also at the conditions under which it is carried out and at its impact on society.

The overview makes nine key policy recommendations. They include increasing funding for basic physics research, developing mechanisms for the US to participate in international research collaborations, revamping undergraduate physics education, reestablishing basic research as a high priority in the Department of Energy's defense labs, and fostering collaborations among government, academia, and industry.

Physics in a New Era: An Overview may be ordered from National Academies Press by e-mail at bpa@nap.edu from their Web site http://www.nap.edu.

Survival of the curriculum. The Kansas State Board of Education has restored Darwinian evolution, the Big Bang, and the age of Earth to the K-12 science curriculum, ending a controversy that began in 1999 when creationists on the board stripped such "controversial" science from the state's education standards. (See PHYSICS TODAY, November 1999, page 59, and October 2000, page 75.)

A contentious election last November that centered on the evolution issue resulted in the defeat of three conservative board members. On 14 February, the new board, by a 7-3 vote, approved new science standards that had been developed by a 27-member committee of science teachers and other experts. The new standards will be used in developing tests that will be administered statewide this spring.

Referring to the elections that put creationists in the majority on the board of education, then removed them, John Staver, director of Kansas State University's Center for Science Education, noted, "I said when this began a year and a half ago that democracy got us into this, and democracy would get us out, and it did." Staver was the cochair of the committee that wrote the new education standards.

Nano journal. Physical, chemical, and biological structures, and processes and applications at the nanoscale are the topics spanned by *Nano Letters*, a new peer-reviewed journal published by the American Chemical Society. Articles are posted online regularly and collected in print monthly. The online multimedia version is free through June at http://www.pubs.acs. org/journals/nalefd/. Paul Alivisatos, a professor of chemistry and materials science at the University of California, Berkeley, is the journal's founding editor.

Scanning for alien lasers. A team led by Harvard physicist Paul Horowitz hopes to spot laser pulses from extraterrestrials with a new optical telescope. The 1.8-meter telescope will scour the northern sky, seeking flashes from fixed objects or aliens on the

It's easy to make beamed laser pulses brighter than stars, says Horowitz. The telescope will view any one spot for only about a minute, he adds, "but if they are sending flashes frequently, we'll see it."

This latest tool joining the search for extraterrestrial intelligence (SETI) is scheduled to go online early next year 65 kilometers west of Boston, in Harvard, Massachusetts, The Planetary Society is paying for the telescope, with half the \$350 000 tab donated by entrepreneur David Brown of Santa Barbara, California.

Web Watch

http://www.bris.ac.uk/Depts/Chemistry/MOTM/motm.htm

Paul May, a chemist at the University of Bristol in England, edits The Molecule of the Month, an online compendium of essays and short pieces about what he deems to be "particularly interesting molecules." Recently featured molecules include the potent artificial sweetener aspartame and the notorious defoliant Agent Orange.

http://mems.isi.edu

The aim of the MEMS Clearinghouse is to foment the sharing of information and ideas about microelectromechanical systems (MEMS).

Run by the University of Southern California's Information Sciences Institute, the site offers news about industrial developments and upcoming conferences, as well as job postings and an online bookshop.

http://hstexhibit.stsci.edu

Currently touring the US, the exhibit Hubble Space Telescope: New Views of the Universe highlights the scientific achievements of the Hubble Space Telescope. The exhibit's lavishly produced online incarnation offers several movies, one of which previews Hubble's successor, the Next Generation Space Telescope.

To suggest topics or sites for Web Watch, please e-mail us at ptwww@aip.org. Compiled by CHARLES DAY