
In science, comparing theo-
retical predictions to exper-

imental measurements often
requires knowing the value of
one or more of the fundamen-
tal physical constants or con-
version factors, such as the
electron mass or the relation
between the electron volt and
the joule. For these purposes,
one looks up and uses the lat-
est values of the necessary
constants in a suitable table.
The source of the numbers in the table is often not given
much thought, however, nor is it critical in most cases.

Further investigation into the source of the numbers
reveals that they are determined by a broad range of
experimental measurements and theoretical calculations
involving many fields of physics and metrology. The best
value of even a single constant is likely to be determined
by an indirect chain of information based on seemingly
unrelated phenomena. For example, the value of the mass
of the electron in kilograms is based mainly on the com-
bined information from experiments that involve classical
mechanical and electromagnetic measurements, the high-
est precision optical laser spectroscopy, electrons in a trap,
and condensed matter quantum phenomena, together
with condensed matter theory and extensive calculations
in quantum electrodynamics (QED). This particular chain
of information will be examined in more detail below.

Two additional features of the values of the constants
are not evident from a table of numbers. First, the numbers
form a tightly linked set—very few of the values are inde-
pendent of the others. In general, a change in a single item
of the data on which the constants are based will change
many of the values. And second, the numbers in the table
are based only on the information available at a particular
time. Therefore, the recommended values change over
time, but more important, the type of information from
which the values are obtained changes as well. For exam-
ple, in the distant past, the charge of the electron was
determined by the classic oil-drop experiment, but that
method is no longer competitive. Now the electron charge is
determined indirectly from other constants.

The set of constants considered here includes the ele-
mentary charge; the masses and magnetic moments of the
electron, muon, proton, and neutron; the fine-structure,
Planck, Rydberg, Avogadro, Josephson, and von Klitzing con-
stants; various particle mass ratios; and many others. The
basic approach to finding a self-consistent set of values of

these constants is to identify
the critical experiments, deter-
mine the theoretical expres-
sions as functions of the fun-
damental constants that make
predictions for the measured
quantities, and adjust the val-
ues of the constants to achieve
the best match between theo-
ry and experiment.

The idea of making a
systematic study of potential-
ly relevant experimental and

theoretical information in order to produce a set of self-
consistent values of the constants dates back to Raymond
T. Birge, who published such a study in 1929 as the very
first article in what is now the Reviews of Modern Physics.1

Since then, there have been many efforts to determine the
best values of the constants. In 1969, the Task Group on
Fundamental Constants was established by the Commit-
tee on Data for Science and Technology (CODATA), which
had been founded three years earlier by the International
Council of Scientific Unions. The task group’s purpose, as
stated in the CODATA handbook, is “to periodically pro-
vide the scientific and technological communities with a
self-consistent set of internationally recommended values
of the basic constants and conversion factors of physics and
chemistry based on all of the relevant data available at a
given point in time.” Based in part on the work of NIST
staff, three sets of CODATA-recommended values of the
constants and conversion factors have been published, one
in 1973,2 one in 1986 and 1987,3 and the latest in 1999 and
2000.4 The most recent set is termed the 1998 recommend-
ed values, because it is based on the information available
as of 31 December 1998. A summary of this adjustment, as
well as tables of values of the constants, appears in the
BUYERS’ GUIDE that accompanied the August 2000 issue of
PHYSICS TODAY. The values of the constants are also avail-
able at http://physics.nist.gov/constants on the NIST
Physics Laboratory Web site, and a searchable biblio-
graphic database on relevant publications is available at
http://physics.nist.gov/constantsbib.

Mass of the electron
One of the recurring themes in the physics behind the
fundamental constants is that their values are rarely
determined by a direct measurement. A basic physics
question illustrates the interplay between the various
constants and the indirect relations involved: What is the
mass of the electron? Or stated more precisely, How can
the single most precise value of the mass of the electron in
kilograms be determined from the information available
at the time of the 1998 adjustment?

Since the kilogram is defined in the International
System of Units (SI) to be the mass of the platinum–irid-
ium international prototype of the kilogram housed at the
Bureau International des Poids et Mesures (BIPM) near

S-0031-9228-0103-010-1 MARCH 2001    PHYSICS TODAY    29

PETER MOHR is a physicist at the National Institute of Standards and
Technology (NIST) in Gaithersburg, Maryland, and is currently the chair
of the Committee on Data for Science and Technology (CODATA) Task
Group on Fundamental Constants. BARRY TAYLOR, previous chair of
the task group, is also a physicist at NIST and is head of the Fundamental
Constants Data Center of the NIST Physics Laboratory.

ADJUSTING THE VALUES OF THE

FUNDAMENTAL CONSTANTS
The best values of the fundamental 

constants can rarely be determined by 
a direct measurement. Instead, they are 

usually found at the end of a chain 
of experimental observations and 

theoretical relationships.

Peter J. Mohr and Barry N. Taylor

Celebrating NIST’s CentennialCelebrating NIST’s Centennial



Paris, the mass of the electron in kilograms is just the
ratio of the electron mass to the mass of that standard
kilogram. This means that one end of the chain of experi-
ments and theoretical expressions that leads to the value
of the electron mass must involve a comparison to the
BIPM kilogram—the only SI unit that is still based on a
material object. Yet a quick survey of the available data
reveals that there is no direct comparison of the electron
and the kilogram, so the value of the ratio is necessarily
determined through an indirect route.

The key to the electron mass is, perhaps surprisingly,
the definition of the Rydberg constant from atomic spec-
troscopy: RF ⊂ a2mec/2h, which involves the fine-structure
constant a, the mass of the electron me, the speed of light
in vacuum c, and the Planck constant h, all of which we
take to be expressed in SI units. The specification of SI
units is important here, as it determines the ground rules

for answering our question. If we were
working with atomic mass units in-
stead of kilograms—that is, if we had
asked, What is the mass of the electron
in atomic mass units?—the answer
could be obtained directly from a mass
ratio measurement (and, it turns out,
would be much more precise). Evident-
ly, the Rydberg definition gives the elec-
tron mass in terms of the other quanti-
ties appearing in it: me ⊂ 2hRF/a2c. We
examine the best determination of each
of these quantities in turn.

The speed of light is an exact quan-
tity in the SI as a consequence of the
definition of the meter adopted in 1983:

The meter is the length of
the path travelled by light
in vacuum during a time
interval of 1/299 792 458 of
a second.

Note that the speed of light is not
given a fixed value directly, but rather
the value is fixed as a consequence of
this definition of the meter.

The next most precise constant in
the expression for the electron mass is
the Rydberg constant. As described in
box 1, its value is determined primarily
by precision laser-spectroscopy meas-

urements on hydrogen and deuterium (figure 1). This field
has developed rapidly in the past decade, with measure-
ments achieving an extremely low level of uncertainty. This
low uncertainty is possible because the optical frequencies
of the transitions can be related directly to the microwave
frequency in the 1967 definition of the second:

The second is the duration of 9 192 631 770
periods of the radiation corresponding to the
transition between the two hyperfine levels of
the ground state of the cesium-133 atom.

In order to interpret the spectroscopy measurements in
terms of the Rydberg constant, it is also necessary to have
an accurate theoretical expression for the measured tran-
sition frequencies. The necessary QED calculations have
also been advancing and, when taken together with the
results of the experiments, give a value for the Rydberg

FIGURE 1. PRECISION LASER-SPECTROSCOPY EXPERIMENTS yield the most precise
value for the Rydberg constant, which in turn can be used to determine the mass of
the electron. This photograph shows an essential element of the current setup used
by Theodor Hänsch and colleagues at the Max Planck Institute for Quantum Optics
in Garching, Germany, for one such experiment, comparing the ultraviolet 1S–2S
hydrogen transition frequency to the microwave frequency that defines the second.
(Photo courtesy of R. Holzwarth and T. W. Hänsch.)

The Rydberg constant RF is determined primarily by com-
paring theory and experiment for energy levels in hydro-

gen and deuterium. For example, the equation corresponding
to the 1S–2S transition frequency of hydrogen is given approx-
imately by

where mp is the mass of the proton, Rp is the root-mean-square
charge radius of the proton, and |C is the Compton wavelength
of the electron divided by 2p. The measured value for this tran-
sition used in the 1998 adjustment is6

nH(1S1/2–2S1/2) ⊂ 2 466 061 413 187.34(84) kHz,

which has a relative uncertainty of 3.4 × 10–13.
The above theoretical expression is approximate and indi-

cates only the leading term of each of four corrections. In par-
ticular, the four terms beyond the “1” on the right-hand side
correspond to contributions from reduced mass, relativistic,
radiative, and finite proton size effects, respectively. But as its
general form shows, the equation still gives information on the
value of the Rydberg constant.

In the 1998 adjustment, 23 transition frequencies or fre-
quency differences in hydrogen or deuterium were included,
and the theoretical expressions for the energy levels used in the
adjustment were based on many analytic calculations and pre-
cise numerical evaluations. The result for the 1998 recom-
mended value for the Rydberg constant is

RF ⊂ 10 973 731.568 549(83) m–1.

Box 1. Transition Frequencies in Hydrogen and Deuterium: The Rydberg Constant
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constant with a relative uncertainty of 7.6 × 10–12.
The fine-structure constant in the expression for the

electron mass is most precisely determined by comparing
theory and experiment for the anomalous magnetic
moment of the electron, as discussed in box 2. Small cor-
rections to the Dirac-equation value of the magnetic
moment of the electron are predicted by QED as a series
in powers of the fine-structure constant (figure 2). The
electron magnetic moment anomaly has been measured to
high accuracy in experiments with electrons in a Penning
trap. By equating the measured value to the theoretical
expression, one obtains a value for the fine-structure con-
stant that has a relative uncertainty of 3.8 × 10–9.

The remaining constant in the electron mass equa-
tion is the Planck constant. The best value of this basic
constant of quantum physics is determined by a watt-bal-
ance experiment that compares a watt of electrical power
to a watt of mechanical power (box 3). A remarkable
aspect of this experiment is that the Planck constant,
which is the characteristic unit of quantum phenomena, is
measured by a two-story-high apparatus, shown in figure
3, that is described by classical mechanics and classical
electromagnetic theory. The Planck constant enters
through the current and voltage cali-
brations in the electrical power deter-
mination, because they are based on
two condensed-matter quantum phe-
nomena, the Josephson effect and the
quantum Hall effect. Together with
the condensed matter theory of these
effects, the calibrations give the elec-
trical power in terms of the Planck
constant and accurately known fre-
quencies. On the mechanical side, a
standard of mass is used that is ulti-
mately calibrated in terms of the
BIPM kilogram. The watt-balance
experiment determines the relation
of the Planck constant to the kilo-
gram, based on condensed matter
physics and mechanical measure-
ments, with a relative uncertainty of
8.7 × 10–8.

With values for the constants
obtained as described, the best value
for the electron mass in kilograms
follows from its simple equation. The
path is indirect and involves a wide
range of physics, as indicated in fig-
ure 4. While this path gives the most

precise value, it is not the only possible path. For exam-
ple, the fine-structure constant can also be determined
from experiments that measure the von Klitzing constant
(RK ⊂ h/e2 ⊂ m0c/2a, where m0 is exactly defined in the SI)
in terms of the impedance of a capacitor whose capaci-
tance in SI units can be calculated. The Planck constant,
in combination with the fine-structure constant, can also
be obtained from experiments that determine the Joseph-
son constant (KJ ⊂2e/h = [8a/m0ch]1/2) in terms of a voltage
calibrated by a mechanical force. In one such experiment,
a voltage was applied between a horizontal electrode plate
and a pool of mercury below it, and the attractive force
that lifts the mercury was determined. The connection to
the kilogram is through an independent measurement of
the density of mercury.

The 1998 recommended value for the electron mass,
based on all the available information, is me ⊂ 9.109 381
88(72) × 10–31 kg. (The number in parentheses is the one-
standard-deviation uncertainty in the last two digits of
the value.)

The high precision of the watt-balance apparatus sug-
gests a possible new definition of the kilogram. This last
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FIGURE 2. QUANTUM ELECTRODYNAMICS (QED) plays an increasingly important
role in relating experimental results to fundamental physical constants. Shown here
are the Feynman diagrams for the lowest-order contribution to the anomalous mag-
netic moment of the electron (left), first calculated by Julian Schwinger in 1948, and
for the next-lowest-order contributions (right). In the diagrams, the straight lines rep-
resent the spacetime trajectory of the electron, the wavy lines represent photons that
propagate the electromagnetic interaction, and the × represents the external magnetic
field that interacts with the electron’s magnetic moment. Comparison of theoretical
calculations to the actual measurement of the electron’s anomalous magnetic moment
yields a precise value for the fine-structure constant a.

The g-factor of the electron, which characterizes the cou-
pling of the electron’s spin to a magnetic field, is not equal

to the value predicted by the Dirac equation ge(Dirac) ⊂ –2.
The deviation from that value is given in terms of the electron
magnetic moment anomaly ae by

ge ⊂ ⊗2(1 ⊕ ae).
The theoretical expression for ae can be written as

where Ce
(2) ⊂ 1/2, the Ce

(2i) with i � 2 are numerical constants,
obtained from extensive QED calculations, ae(had) is a pre-

dominantly hadronic vacuum polarization contribution,
ae(weak) is a predominantly electroweak contribution, and de

is an additive correction that takes into account the theoretical
uncertainty, estimated to be 1.1 × 10–12.

The anomaly has been measured for the electron and
positron,7 and, assuming CPT invariance holds, we take a
weighted average of those values to obtain

ae ⊂ 1 159 652 188.3(4.2) × 10–12.

The electron anomalous magnetic moment data provide the
most influential information on the value of the fine-structure
constant a. Of course, in the final adjustment, all sources of
information on a contribute to the 1998 recommended value:

a–1 ⊂ 137.035 999 76(50).

Box 2. Anomalous Magnetic Moment of the Electron: The Fine-Structure Constant
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remaining material definition
of an SI unit could be elim-
inated by redefining the kilo-
gram5 to be the mass corre-
sponding to a specified frequen-
cy nk, according to the Einstein
and Planck relations E ⊂ mc2

and E ⊂ hn. With such a defini-
tion, we would have h ⊂ (1 kg)
c2/nk, which expresses the
Planck constant as an exact
quantity. This exact value for
the Planck constant would be
the consequence of the defini-
tion of the kilogram, just as the
exact value of the speed of light
is a consequence of the defini-
tion of the meter. Thus, with
the Planck constant exactly
defined, the watt-balance appa-
ratus would be a precision scale
that could measure the mass of
objects in terms of the newly
defined kilogram. Also, with
this definition, the mass of the
electron in kilograms would
have about an order-of-magni-
tude smaller uncertainty.

Adjusting the constants
The example of the electron mass illustrates how the
information that leads to the values of the constants can
be indirect and how different paths provide redundant
constraints on their values. To obtain the best values, it is
necessary to take all of this information into account
simultaneously; to do this in a consistent manner, a least-
squares approach is used to determine the values of the
constants.

In the approach of the 1998 adjustment, the informa-
tion is divided into three categories: input data, observa-
tional equations, and adjusted constants. The input data
are results of measurements that provide the best con-
straints on the values of the constants. The observational
equations are theoretical expressions that give values of
the quantities in the input data category as functions of
the adjusted constants. The adjusted constants are a suit-
ably chosen set of fundamental constants that are deter-

mined by the adjustment. The adjustment’s role is to find
the values that best reproduce the input data by means of
the theoretical expressions.

Examples of input data are the measured value of the
anomalous magnetic moment of the electron, measured
values of transition frequencies in hydrogen, ratios of
magnetic moments of various particles, ratios of masses of
various atoms, neutron diffraction data, and silicon lat-
tice-spacing data. The guiding principle of gathering
input data is that the values represent actual measured
quantities. In particular, this means not using data that
has been analyzed with information based on old values of
the fundamental constants. Since these values will be
updated by the adjustment, they must be removed from
the analysis so that, in effect, the final values of the con-
stants are used instead. For example, if an experiment
reports the value of an x-ray wavelength based on Bragg
diffraction by a silicon crystal, the input datum is not taken
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FIGURE 3. WATT-BALANCE EXPERIMENTS, which
compare mechanical power to electrical power, pro-

duce the best value for the Planck constant h. In
NIST’s two-story-tall watt balance, the gravitational

force on a mass standard is balanced by the magnetic
force on a current-carrying coil in one phase of the
experiment. (a) Richard Steiner positions the mass
standard at the top of the watt balance. (b) Edwin

Williams checks the superconducting magnet used to
generate the radial magnetic field at the lower level of

the watt-balance experiment.

The Planck constant h can be measured by comparing a watt
of mechanical power expressed in terms of the meter, kilo-

gram, and second to a watt of electrical power expressed in terms
of the Josephson constant KJ ⊂ 2e/h (which relates frequency
and voltage through the Josephson effect) and the von Klitzing
constant RK ⊂ h/e2 (which has units of resistance and originates
in the integer quantum Hall effect) in the combination

The apparatus that makes the comparison is called a watt bal-
ance.8 The basic principle of the watt balance is illustrated by
one of its implementations.9 A horizontal coil of wire is sus-
pended in a radial magnetic field. The current in the coil need-
ed to support the weight of a mass standard is measured in one
phase of the experiment. In the second phase, the strength of
the field is determined by slowly moving the coil vertically and

measuring the induced voltage. The current I and mass m in the
first phase and the velocity v and induced voltage U in the sec-
ond phase are related by

mgv ⊂ IU ⊂ Af1f2h,

where g is the local acceleration of free fall, which is accurate-
ly measured with an absolute gravimeter. Since the voltage U
and the voltage and resistance that determine I are calibrated in
terms of the Josephson and von Klitzing constants, the con-
stant A is, in principle, exactly known, and f1 and f2 are the
accurately known frequencies applied to the Josephson junc-
tions in the two phases of the experiment. This equation gives
h in terms of quantities directly measured in the experiment.
The 1998 recommended value of the Planck constant, which is
determined primarily by the watt-balance experiment, is

h ⊂ 6.626 068 76(52) × 10⊗34 J s.

Box 3. Watt-Balance Experiment: The Planck Constant
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to be the reported wavelength, but
rather the ratio of the x-ray wave-
length to the silicon crystal’s lattice
spacing, which is the actual measured
quantity. The lattice spacing is one of
the constants in the adjustment, and
its value will be optimized based on all the information that
influences it, including the wavelength–lattice-spacing ratio.

Observational equations can range from a completely
trivial statement that a quantity equals itself to a complex
set of formulas that encompass decades of work on detailed
QED calculations. In the former case, if a constant is meas-
ured directly, then the measured value is formally compared
to the corresponding adjusted constant. At the other
extreme, the transition frequencies in hydrogen and deuteri-
um or the ground-state hyperfine splitting of muonium are
described by observational equations that are quite involved
and include the results of numerous contributions, from the
early days of quantum mechanics to very recent advances.

Built into the selection of the observational equations
are assumptions about what constitutes the correct theo-
ry on which to base the values of the fundamental con-
stants. The established theory is taken to be ordinary
quantum mechanics and its successive generalizations—
QED, electroweak theory, and the Standard Model of par-
ticle physics—as well as the basic equations of the Joseph-
son effect and the integer quantum Hall effect from con-
densed matter theory. Not all of this theory is beyond
question at the level of accuracy needed, but it is neces-
sary to make some assumptions in order to assign values
to the constants. Since there is redundancy in the evalua-
tion of the constants, the consistency of values derived
from different theoretical relations is a check on the con-
sistency of the theory, and there is no convincing evidence
from the 1998 adjustment that any theoretical assump-
tions should be discarded.

The fundamental constants whose values are adjust-

ed to fit the data form a relatively small subset of all of the
1998 CODATA recommended values. The adjusted set
includes the Rydberg constant, the fine-structure con-
stant, the Planck constant, various particle masses in
atomic mass units, lattice spacings of various specific sil-
icon crystal samples, and the molar gas constant. Other
fundamental constants, such as the electron mass in kilo-
grams and energy conversion factors, are derived from the
subset based on exact theoretical relations. There is no
unique choice for the constants that are included in the
directly adjusted set, but they must form an independent
set—no member of the subset may be related to others by
a theoretical identity. Covariances between the values of
the adjusted constants are taken into account in calculat-
ing the values of the derived constants, so the adjusted
constants are not necessarily more precise than the
derived constants.

The 1998 adjustment
The latest adjustment of the fundamental constants pro-
vides a new set of recommended values. The uncertainties
of the new values are in most cases about 1/5 to 1/12, and in
some cases 1/160, of the uncertainties of the corresponding
previously recommended values. However, as box 4
describes, the new recommended value of the Newtonian
constant of gravitation has a larger uncertainty than the
earlier value.

A striking aspect of the latest adjustment is the extent
to which the recommended values depend on QED theory.
This increase is coupled to the increase in precision in the
constants, as both experiments and theory related to QED
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FIGURE 4. DETERMINATION

of the most accurate value
of the mass of the electron

in kilograms relies on 
experiments and theories 

from varied fields of physics.

One of the oldest fundamental constants is the Newtonian
constant of gravitation G, which gives the strength of the

gravitational force of attraction between any two objects
according to the familiar formula

where m1 and m2 are the masses of the two objects and r is the
distance between them (assumed to be large compared to their
extent). In effect measured by Henry Cavendish in 1798, this
constant has shown resistance to improvement over the years.
In fact, it is the only constant whose recommended value in the
1998 adjustment has a larger uncertainty than its recommended
value in the prior 1986 adjustment. The reason for the increased
uncertainty is that after the 1986 value was recommended, a
new, highly credible experiment reported a value for G that dis-

agreed significantly with the recommended value.10 Further-
more, a small, but previously unknown, anharmonicity was
found in the suspension of torsion balances, such as the one
used in the experiment on which the 1986 value was based.
These facts suggested that the gravity experiments were not
understood as well as was believed. Thus, the 1986 value was
retained as the 1998 recommended value, but its uncertainty
was increased by about a factor of 12 to recognize these issues
and to alert users to the problem. As a result of these consider-
ations, the 1998 recommended value is

G ⊂ 6.673(10) × 10–11 m3 kg–1 s–2.

Recently, a precise result of a new experiment that is in rela-
tively good agreement (within two standard deviations) with
the 1986 recommended value has been reported11 (see PHYSICS

TODAY, July 2000, page 21).

Box 4. Gravitational Attraction Experiments: The Newtonian Constant of Gravitation
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improve. The relation of resistance calibration standards
to the theoretical calculation of higher-order Feynman
diagrams illustrates the broad impact of QED theory.
Over the past decade, most standards laboratories,
including NIST, have shifted to resistance standards
based on the quantum Hall effect rather than on banks of
standard resistors. According to the theory of the integer
quantum Hall effect, the associated von Klitzing constant
is a simple and exact function of the fine-structure con-
stant. As described in box 2, the value of the fine-structure
constant is most strongly determined by comparison of
theory and experiment for the electron anomalous mag-
netic moment, and the theoretical expression, in turn, is
determined by high-order QED calculations. In addition
to this influence on standards for the ohm, if the kilogram
were defined so that the Planck constant was an exact
constant, then the Josephson constant would also depend
on exact constants together with the fine-structure con-
stant. As a result, high-accuracy voltage standards, which
are now usually based on the Josephson effect, would also
be limited only by QED experiment and theory.

The remarkable reduction in uncertainty that has
been possible for the fundamental constants over the past
decade is accompanied by a liability. Many of the values in
the 1998 adjustment rely predominantly on a single item
of data either from experiment or theory, or both as in the
case of the fine-structure constant. As a result, one or more
such items of data may possibly be found to be in error by
subsequent investigations, in which case the values of the
constants would change. We view this as a necessary risk,
since the alternative would be to enlarge the uncertainties
of the values of the constants to be “certain” that they are
correct. This alternative would provide values that are
considerably less precise and still not necessarily correct.

More important, such an approach would not make full
use of the information provided by the most advanced and
accurate experimental and theoretical results.

In view of the steady progress in the field of funda-
mental constants, the values are bound to become out-
dated soon after they are recommended and published.
Indeed, new information relevant to the values of the con-
stants has already become available since the 1998
adjustment. To keep the values up-to-date to the extent
possible, CODATA expects to provide new recommended
values at four-year intervals in the future.

This paper is a contribution of NIST and is not subject to
copyright in the United States. NIST is an agency of the Tech-
nology Administration, US Department of Commerce.
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