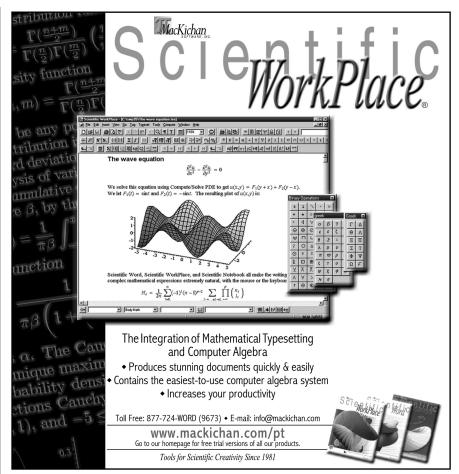
LETTERS continued from page 15

tal difficulty arises in resolving lengths below the Planck scale. This point has been "rediscovered" many times, but C. Alden Mead's discussion is the earliest I'm aware of. It nicely supplements the article, in which the Planck length was introduced in a somewhat different way.


One can understand the source of the bias Mead encountered, and in the process highlight an important principle: What quantities one chooses to regard as fundamental can depend on what domain one seeks to describe. A good approximate description of much of chemistry and molecular biology can be obtained by taking only the electron mass and charge as inputs, using Planck's constant \hbar as the unit of action, and regarding atomic nuclei as infinitely massive point-particles. In this system, the Bohr radius \hbar^2/e^2m appears as the fundamental unit of length; indeed this sets the scale for atomic and molecular sizes. A good approximate description of strong-interaction physics can be obtained by taking only the quantum chromodynamics mass scale Λ as input, using Planck's constant and the speed of light *c* as units of action and velocity. In this system the fundamental unit of length is $\Lambda/\hbar c$; and indeed this sets the scale for proton and nuclear sizes. In the 1960s and early 1970s, stronginteraction physics was the primary focus of fundamental physics, and this system (implicitly) seemed most natural.

FRANK WILCZEK

wilczek@mit.edu Massachusetts Institute of Technology Cambridge

On Keeping Chinese Science Students

I'd like to add to the story by Lynley Hargreaves (PHYSICS TODAY, May 2001, page 24) on the dropout rate among Chinese physics PhD students. I am the chair of the graduate admissions committee in chemistry at Colorado State University. Since 1991, I have noticed similar trends among our chemistry students from the People's Republic of China. Like many state schools, CSU has significantly different tuition for resident versus nonresident graduate students. This is a cost that the department or the research advisor's grants

Circle number 43 on Reader Service Card

STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

(Act of 12 August 1970; Section 3685, Title 39, USC)

- Title of publication: PHYSICS TODAY
- 2. Publication no.: 0031-9228
- 3. Date of Filing: 1 October 2001
- Frequency of issue: Monthly
- 5. No. of issues published annually: 12
- Annual subscription price: \$215.00
- Location of known office of publication. 2 Huntington Quadrangle, Melville, NY 11747-4502
- Location of the headquarters or general business offices of the publisher: One Physics Ellipse, College Park. MD 20740-3843
- Names and addresses of publisher, editor and managing editor:

Publisher: Randolph A. Nanna, American Institute of Physics, One Physics Ellipse, College Park, MD 20740-3843

Editor: Stephen G. Benka, American Institute of Physics, One Physics Ellipse, College Park, MD 20740-3843

Managing Editor: None

- 10. Owner (if owned by a corporation, its name and address must be stated and also immediately there under the names and addresses of stockholders owning or holding 1 percent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual, must be given. If the publication is published by a nonprofit organization, its name and address must be stated.): American Institute of Physics, One Physics Ellipse, College Park, MD 20740-3843
- 11. Known bondholders, mortgagees and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages or other securities: None
- The purpose, function and nonprofit status of this organization and the exempt status for Federal income tax purposes: Has not changed during the preceding 12 months
- Publication name: PHYSICS TODAY
- 14. Issue date for circulation data below: July
- Extent and nature of circulation:
 - A. Total number of copies (net press run) Average* $124\ 521$
 - B. Paid and or requested subscriptions
 - 1,2. Paid or requested mail subscriptions Average* 114 417 120 639 Julv**
 - 3,4. Sales through dealers and carriers, street vendors and counter sales; other classes mailed
 - July** Average* none none C. Total paid and/or requested circulation
 - sum of B1-B4) 114 417 Julv** Average* 120 639 D. Free distribution (samples, complimentary and other free)
 - July** Average* none none E. Free distribution outside the mail (carriers or $other\ means)$
 - $8\,322$ July** $5\,330$ Average*
 - F. Total free distribution (sum of D and E) $8\,322$ 5 3 3 0
 - G. Total distribution (sum of C and F) 125 969 Average* 122 739 July**
 - H. Copies not distributed (office use, leftovers and spoiled)
 - Average* 1 782 July** 3 144 I. Total (sum of G and H—should equal net press run shown in A)

July** 129 113 Average*

Percent paid and/or requested circulation

- Average* 93 22% July** 95.77% Average number of copies of each issue during preceding 12 months
- ** Actual number of copies of single issue published nearest to filing date.

I certify that the statements made by me above are correct and complete

Richard Baccante, Treasurer

must bear. Along with the costs, we are also concerned about teaching assistants' English language skills. Consequently, only 10 to 20% of our incoming graduate student classes comprise foreign students: 4 to 8 out of 30 or 40 new grad students per year. A significant number of students have dropped out of chemistry, to the advantage of our computer science program.

We have recently taken steps to select top chemistry students from the PRC who will want to stay in chemistry. We look for students who have been involved with undergraduate research and have published on chemistry-related topics. These two elements usually indicate students who are finishing a master's degree. We also call prospective students and interview them individually to determine their intentions. They are usually (though not always) forthright, and their interest in remaining in chemistry can be ascertained. When possible, we also call the student's adviser for additional information.

Generally, Graduate Record Exam scores are a very poor indicator of a student's future performance. We have found that undergraduate research experiences are the best indicator of both a student's performance and his or her dedication to a chosen science.

Building relationships with departments in the PRC is critical to developing the kind of openness one needs to accurately evaluate students. It's not always obvious how to do that except to take the first step. Careful selection of students and careful mentoring once they are here are the best solutions to this problem.

PETER K. DORHOUT

(pkd@lamar.colostate.edu) Colorado State University Fort Collins

Computer Overkill?

What do scientists really need from a computer? I suggest that there are many physicists whose only computer needs are straightforward programming, a good graphics routine, a good text-processing routine, reliable and easily readable e-mail, and, probably, easy access to the Internet, I suspect that many physicists, like myself, are not the least bit interested in the finer points of computing technology or fancy graphics; they find that most of the recent computing innovations offered to—or perhaps pushed at them are unnecessary.

Journals want us to submit our papers in some special format or another. It is not our job to produce such files; journal staff include, or should include, text-processing experts. Colorful conference posters may be pleasant works of art but it is doubtful if a poster can say much more than several sheets of paper containing good black and white figures with some simple explanatory text and possibly one or two figures that require color. Regrettably, some students imagine that computing is science rather than technology.

Members of the scientific community should make their needs clearly understood both to the computing industry and, equally important, to systems managers who are apt to be carried away by each innovation. Of course, there are individual special needs but, for most of us, the VAX/ VMS supplied our needs in an efficient and understandable manner.

COLIN H. BARROW

barrow@linmpi.mpg.de Max Planck Institute of Aeronomy Katlenburg-Lindau, Germany

heers for Richard Hammond, who challenges the visionary image of a brave new world run by Internet and computer "culture" (see PHYSICS TODAY, February 2001, page 14). It is indeed time to steer clear of quicksilver medicines and instead "channel our finances and our creative energy toward a real improvement in education, and not a virtual one." How severely the psychedelic vision of an "information-dominated society" has already infected our lives is well illustrated, ironically, by an article in the same issue of PHYSICS TODAY (page 24) where we learn about "a new undergraduate college that will be 'born wireless,' " that is, "students will experiment, and be an experiment, with being hooked to the Internet all the time." Moreover, the students will possess a device that will "continuously transmit and receive information to tell students . . . where to find their friends or professors (and vice versa) . . . and where they can find a parking spot." Who needs that? Who pays the cost? Why?

In that same article, we read of the nightmare vision of a "smart house" in which everything is done by computers, "from adjusting lighting, temperature, and music to transmitting the blood pressure and weight of the house's occupants to a medical clinic." George Orwell's apocalyptic vision 1984 was a nursery story compared with such a horror-