SPIN AND ISOSPIN: EXOTIC
ORDER IN QUANTUM HALL
FERROMAGNETS

uantum mechanics is a

strange business, and
the  quantum physics of
strongly correlated many-
electron systems can be
stranger still. Good exam-
ples are the various quan-
tum Hall effects.'* They are
among the most remarkable
many-body quantum phe-
nomena discovered in the second half of the 20th century,
comparable in intellectual import to superconductivity
and superfluidity. The quantum Hall effects are an
extremely rich set of phenomena with deep and truly fun-
damental theoretical implications.

The fractional quantum Hall effect has yielded frac-
tional charge, with its attendant spin—statistics peculiar-
ities, as well as phases with unprecedented order param-
eters. It has beautiful connections to a variety of different
topological and conformal field theories more commonly
studied as formal models in particle theory. But in the
quantum Hall context, each of these theoretical constructs
can be made manifest by the twist of an experimental knob.
Where else but in condensed-matter physics can an experi-
menter change the number of flavors of relativistic chiral
fermions in a sample, or create a system whose low energy
description is a Chern—Simons gauge theory whose funda-
mental coupling constant (the 6 angle) can be set by hand?

The first quantum Hall effect was discovered by
Klaus von Klitzing 20 years ago, for which he won the
1985 Nobel Prize in physics. (See PHYSICS TODAY, Decem-
ber 1985, page 17.) Because of recent tremendous techno-
logical progress in molecular-beam epitaxy and the fabri-
cation of artificial structures, quantum Hall experimenta-
tion continues to bring us striking new discoveries. The
early experiments were limited to simple transport meas-
urements that determined energy gaps for charged excita-
tions. Recent advances, however, have given us many new
probes—optical, acoustic, microwave, specific heat, tunnel-
ing spectroscopy, and NMR—that continue to pose intrigu-
ing new puzzles even as they advance our knowledge.

Quantum Hall phenomena

The quantum Hall effect takes place in a two-dimension-
al electron gas formed in an artificial semiconductor
quantum well and subjected to a high magnetic field nor-
mal to the plane. In essence, this macroscopic quantum
effect is a result of commensuration between the number
of electrons N and the number of flux quanta N, in the
applied magnetic field. That is to say, the electron popula-
tion undergoes a series of condensations into new states
with highly non-trivial properties whenever the filling
factor v = N/N, is an integer or a simple rational fraction.
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Spin and a peculiar kind of isospin in
two-dimensional electron gases can
exhibit novel counterintuitive ordering
phenomena.

Steven M. Girvin

Von Klitzing’s original
observation was, in effect, a
sequence of energy gaps
yielding (in the limit of zero
temperature) electron trans-
port without dissipation—
much like a superconductor,
but with radically different
underlying physics.

The Hall conductivity
o, in this dissipationless state turns out to be universal.
It is given by ve*h with great precision, irrespective of
microscopic or macroscopic details. Therefore, one can
exploit this remarkable phenomenon to make a very pre-
cise determination of the fine-structure constant and to
realize a highly reproducible quantum-mechanical unit of
electrical resistance. The quantum Hall effect is now used
by standards laboratories around the world to maintain
the ohm.

It is an amusing paradox that this ideal behavior
occurs only in imperfect samples. That’s because disorder
produces Anderson localization of quasiparticles, pre-
venting them from contributing to the transport proper-
ties. If the laboratory samples were ideal, the effect
would go away!

The integer quantum Hall effect is due to an excita-
tion gap associated with the filling of discrete kinetic-
energy levels (Landau levels) of electrons executing quan-
tized cyclotron orbits in the imposed magnetic field (see fig-
ure 1). Coulomb interactions between electrons would seem
to be unimportant. When v is an integer, the chemical
potential lies in one of these kinetic energy gaps. The frac-
tional quantum Hall effect occurs when one of the Landau
levels is fractionally filled. Its physical origins—very dif-
ferent from those of the integer effect—are strong
Coulomb correlations that produce a Mott-insulator-like
excitation gap.

In some ways, this excitation gap is more like that in
a superconductor, because it is not tied to a periodic lat-
tice potential. That permits uniform charge flow of the
incompressible electron liquid and hence a quantization of
Hall conductivity. The electrons are strongly correlated
because all the states in a given Landau level are com-
pletely degenerate in kinetic energy. Perturbation theory
is therefore useless. But the novel correlation properties
of this incompressible electron liquid are captured in a
revolutionary wave function proposed by Robert Laugh-
lin, for which he shared the 1998 Nobel Prize in physics
with Horst Stormer and Daniel Tsui, who discovered the
fractional quantum Hall effect in 1982. (See PHYSICS
ToDAY, December 1998, page 17.)

Quantum Hall ferromagnetism

At v=1 and certain other filling factors, quantum Hall
systems exhibit spontaneous magnetic order. This consti-
tutes a very peculiar kind of ferromagnetism: It is itiner-
ant—the electrons are free to move around as in metals
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like iron—and yet it exhibits a charge excitation gap that
manifests itself by precisely quantized Hall conductivity
and the vanishing of the ordinary, dissipative longitudinal
conductivity o_.

My colleague Allan MacDonald refers to the v=1
state as “the world’s best understood ferromagnet.” The
lowest spin state of the lowest Landau level is completely
filled and the exact ground state (neglecting small effects
from Landau-level mixing) is very simple: It is a single
Slater determinant precisely represented by Laughlin’s
wave function. (See the article by Jainendra Jain in
PHYSICS TODAY, April 2000, page 39.) Unlike iron, this fer-
romagnet is 100% polarized, because the kinetic energy
has been frozen into discrete Landau levels and polarizing
the electron gas costs no kinetic energy.

For reasons peculiar to the electronic band structure
of GaAs, the usual host semiconductor, the external mag-
netic field couples very strongly to the orbital motion (giv-
ing a large Landau level splitting) and very weakly to the
spin degrees of freedom (giving an exceptionally small
Zeeman gap, as shown in figure 1). Therefore, the spin ori-
entation is not frozen in place, as one might naively
expect. The low-energy spin degrees of freedom of this
unusual ferromagnet have some rather novel properties
that have recently been probed by specific-heat measure-
ments, NMR, and other means.

The simplest excitations out of the ground state are
spin waves (magnons), in which the spin orientation
undergoes smooth fluctuations in space and time. Because
of the unusual circumstance that the ground-state wave-
function is a single, known Slater determinant, the single-
magnon excited-state spectrum can also be computed
exactly (see figure 2.) One can then use various approxi-
mate techniques to predict rather accurately the temper-
ature dependence of the magnetization.5’

One of the interesting features of the physics here is
that two dimensions is the lowest dimensionality for
which ordering is possible in magnets with Heisenberg
(SU,) symmetry. That is to say, the phase space for spin-
wave excitations in two dimensions is large enough so
that there is an infrared divergence in the number of
excited magnons at any finite temperature. Hence the
magnetization, which is 100% at zero temperature, crash-
es immediately to zero at any finite temperature. In the
presence of a small Zeeman coupling, the magnetization
begins to drop towards zero (as shown in figure 2b) at a
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FIGURE 1. LANDAU LEVELS of uniformly spaced kinetic ener-
gy of a two-dimensional electron gas in a quantizing magnetic
field B whose cyclotron frequency is w_. In free space, the Zee-
man splitting gu,B equals the Landau level splitting, but in
GaAs heterostructures it is nearly two orders of magnitude
smaller. At sufficiently low temperature, most of the electron
spin orientations are in the lower Zeeman level.

temperature of a few K, characteristic of the Zeeman gap
and the spin stiffness.

At filling factor v = 1, spin waves are the lowest ener-
gy excitations. But because they do not carry charge, they
do not have a large impact on the electrical transport
properties. Since the lowest spin state of the lowest Lan-
dau level is completely filled at v = 1, the Pauli exclusion
principle tells us that we can add more charge, as illus-
trated in figure 1, only with reversed spin. In the absence
of strong Coulomb interactions, the energy cost of this
spin flip is simply the Zeeman energy, which is very small.
So one might not expect to see a quantized Hall plateau
near v = 1, because there would be a high density of ther-
mally excited charges. However, the Coulomb interaction
exacts a large exchange-energy penalty for having a
reversed spin in a ferromagnetic state.?” Thus magnetic
order induced by Coulomb interactions turns out to be
essential to the integer quantum Hall effect.

Skyrmions

In 1993, Shivaji Sondhi and collaborators® made a notable
discovery: Because the exchange energy is large and
prefers locally parallel spins, the Zeeman energy being
small, it is energetically cheaper to form a topogical spin
texture by partially turning over some of the spins. (See
the box on page 42.) Such a topological object is called a
skyrmion, because of its provenance in the Skyrme model
of nuclear physics. Since the system is an itinerant mag-
net with a quantized Hall conductivity, it turns out that
the skyrmion texture accommodates precisely one extra
unit of charge. NMR shifts and various optical and trans-
port measurements have confirmed the prediction that
each charge added to or removed from the state flips over
a handful of spins. (See figure 3.)

In nuclear physics, the Skyrme model imagines the
universe in a kind of ferromagnetic state, with a magneti-
zation that is a four-component vector. Thus there are
three directions in spin space for fluctuations around the
(broken-symmetry) magnetization direction. So one has
three different spin waves, representing the three light
mesons 7+, 7, and 7°. The nucleons (the protons, the neu-
tron, and their antiparticles) are taken to be topological
defects in this magnetization field. Through the magic of
Berry-phase terms in the Lagrangian, these objects are
fermions, even though they are excitations of a bosonic
order-parameter field.

Essentially the same phenomenon occurs in quantum
Hall ferromagnets, the only difference being that the spin
waves have a non-relativistic (quadratic) dispersion rela-
tion, and the “nucleons” come in only one flavor: the elec-
tron and its antiparticle, the hole. Because the quantum
Hall ferromagnetic order parameter is a three-component
vector, there are only two directions in spin space for fluc-
tuations around the broken-symmetry direction. One
might think that this implies that there are two spin wave
modes. But, in the nonrelativistic case, it turns out that
the two coordinates are canonically conjugate and there
is, in fact, only a single ferromagnetic spin wave.

Because it costs significant energy (about 30 K) to
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create a skyrmion or anti-skyrmion, they freeze out and
disappear at low temperatures at v = 1. However, as one
moves away from this filling factor, the cheapest way to add
or subtract charge is through the formation of a finite den-
sity of skyrmions (proportional to |v - 1|). Thus, away from
v = 1, skyrmions do not freeze out, even at zero temperature.
One might ask why skyrmions are not important in ordi-
nary thin-film magnets. Skyrmions can exist there, in prin-
ciple. But they always freeze out at low temperatures,
because they do not carry charge and their density can not
be controlled by varying the chemical potential.

Normally we think of manipulating spins by applying
magnetic fields. A notable feature of quantum Hall ferro-
magnets is that, because skyrmions carry charge, one can
move spins around by applying electrostatic potentials.
For example, a random disorder potential can nucleate
skyrmions.

In the presence of skyrmions, the ferromagnetic order
is no longer colinear. The skyrmion configuration shown
in the box on page 42 is only one of a continuous family of
minimum-energy solutions. There exist two “zero modes,”
corresponding to translation of the skyrmion in real space
and uniform rotation in spin space about the axis defined
by the Zeeman field. In the presence of many skyrmions,
these additional degrees of freedom lead to two totally

FIGURE 2. SPIN WAVE EXCITATIONS (magnons) from the
quantum Hall ground state. (a) Dispersion relation for single
magnons. At low frequency, the energy grows quadratically
with wave number, starting from the Zeeman gap A, ~ 1K,
and saturates at the Coulomb exchange energy A, ~100K.
(b) Temperature dependence of the magnetization at filling
factor v = 1. Temperature is normalized to the Zeeman gap.
Squares indicate experimental data.® Open circles and curves
indicate various theoretical calculations.®”

new classes of low-energy collective excitations—“Gold-
stone modes” associated with the broken spin rotational
and translational symmetry. Unlike ordinary spin waves,
these Goldstone modes are not constrained by Larmor’s
theorem to have a minimum excitation gap given by the
Zeeman energy. Indeed at long wavelengths, these excita-
tions can go all the way down to zero frequency. That’s
because, in semiclassical terms, rotations about the Zee-
man axis do not cost any Zeeman energy. In an ordinary
ferromagnet, the ground state is invariant under rota-
tions about the Zeeman axis. So the rotation produces no
excitation. In a non-colinear system, however, states pro-
duced by different rotations are distinguishable from each
other. Thus each skyrmion induces a new xy quantum-
rotor degree of freedom.°

These low-frequency xy spin fluctuations have been
indirectly observed through a dramatic enhancement of
the nuclear spin-relaxation rate 1/¢,. Because nuclei pre-
cess at frequencies some three orders of magnitude below
that of the Zeeman gap, they do not couple effectively to
ordinary spin waves in the electron system. So the nuclear
relaxation time ¢, can become many minutes, or even hours,
at low temperature. But in the presence of skyrmions, ¢,
becomes so short (~ 20 s) that the nuclei come into thermal
equilibrium with the lattice through interactions with the
electrons in the quantum well. This effect has recently been
observed experimentally by Vincent Bayot, Mansour
Shayegan and collaborators as a specific-heat enhancement
of more than 5 orders of magnitude, due to the entropy of
the nuclei® (see figure 4).

Isospin Ordering in Bilayer Systems

Ordinary spin is not the only internal degree of freedom
that can spontaneously become ordered. It is now possible
to make a pair of identical electron gases in quantum
wells separated by a distance (~10 nm) comparable to the
electron spacing within a single quantum well. Under
these conditions, one can expect strong interlayer correla-
tions and new types of ordering phenomena associated
with the layer degree of freedom.? The many-body physics
of two-layer systems can also be found in wide single-well
systems with the two (nearly degenerate) lowest quantum-
well subband states playing the role of a pseudospin
degree of freedom.

One of the peculiarities of quantum mechanics is
that, even in the absence of tunneling between the layers,
the electrons can be in a coherent state in which their
layer index is uncertain. To understand the implications
of this, we can define a pseudospin, which we also call
“isospin,” after the abstract spin Heisenberg introduced to
distinguish neutrons from protons. In our case, the
isospin is up if the electron is in the first layer and down
if it is in the second. Spontaneous interlayer coherence
corresponds to pseudospin magnetization lying in the xy
plane, corresponding to a coherent mixture of pseudospin
up and down.

If the total filling factor for the two layers is v = 1, the
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Skyrmions and Topological Quantum Numbers

In this illustration of skyrmion spin texture in a quantum
Hall ferromagnet, note that the spins are all up at infinity
but down at the origin. At intermediate distances, they have a
vortex-like configuration. Because of the quantized Hall con-
ductivity, skyrmions carry extra charge. Although this extra
charge is distributed throughout the core region, its total value
is quantized. In fact, the skyrmion charge is directly propor-
tional to the * topolog1cal charge” of the magnetization order-
parameter field m(r) and is glven by the remarkable formula
=—0' J‘dz s’“ealxm a,m’o,m’.
where o_ is the Hall conduct1v1ty. The epsilons are the fully
antisymmetric tensors of second and third rank.

The physics behind this equation is the following: An elec-
tron traveling through a region will have its spin aligned with
the local magnetization direction by the exchange field. Thus
its spin direction will vary as the electron moves through the
spin texture. If the spin direction is twisting in two directions
at once (as required by the two spatial derivatives in the equa-
tion), the electron acquires a path-dependent Berry phase,
much as if it were traveling through some additional magnetic

Coulomb exchange energy will strongly favor this mag-
netic order, just as it does for real spins. That’s because
the spatial part of the fermionic wavefunction must van-
ish if two electrons with the same pseudospin orientation
approach each other. (In contrast to the previous sections,
we assume here that the real spins have been frozen into
a ferromagnetic state and can be ignored.)

For real spins, the Coulomb interaction is spin invari-
ant. For pseudospins, we must take into account the fact
that intralayer repulsion is slightly stronger than interlayer
repulsion. If the pseudospin were to become ordered in the z
direction, all of the electrons would be in one single layer,
resulting in a large capacitive charging energy. That would
lead to an “easy plane” anisotropy in which the pseudospin
ferromagnetic order prefers to lie in the xy plane.

When the charging energy is not severe, a good
approximation to the xy ordered state is

W) =TT (e, +e*e,l0), 1
k

where each c' is the creation operator (acting on the vacu-
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flux. Adding flux draws in or expels charge proportional to the
amount of this flux.

This same picture was used by Laughlin to derive the frac-
tional charge of the quasiparticles in the case where the Hall
conductivity o_ is described by a fractional quantum number.
At filling factor v = 1, the Hall conductivity o, = ¢//h and the
skyrmion binds exactly one extra electron (or hole). Therefore
it must be a fermion.

um state [0>) for a given pseudospin in the kth single-par-
ticle spatial orbital. In this state, every single-particle
orbital in the lowest Landau level is occupied by precisely
one electron (hence v = 1). But each of these electrons is in
a coherent superposition of the two pseudospin states.
Much like the BCS wavefunction for a superconductor,
this state has a definite phase ¢, but an indefinite parti-
cle number. In our case, it is not the total particle number
that is indefinite, but rather the particle-number differ-
ence between the two layers.'* In contrast to the Cooper-
pair field order parameter of a superconductor, the order
parameter here

V()= @) o e))~e” @
is charge-neutral and thus able to condense despite the
presence of the intense magnetic field. The order parame-
ter at each point r is the expectation value of the spin-
raising operator at that point. Because each electron is in
a coherent superposition of states in different layers, one
can destroy an electron in one layer and create an electron
in the other, without leaving the ground state. In a certain
sense, the coherent state is like an excitonic insulator
with a particle and hole bound together—with the impor-
tant difference that we do not know which layer each is in.
This neutral object can travel through the magnetic field
without suffering a classical Lorentz force or any Ahara-
nov-Bohm phase shift.

In the absence of tunneling between the layers, the
electrons have no way of determining the phase angle ¢.
Therefore, the energy must be independent of its global

FIGURE 3. MEASURED NMR SHIFT yields electron spin polar-
ization as a function of filling factor near v = 1. This “Knight
shift” is the change in nuclear precession frequency due to
hyperfine coupling to the electron spin density. Circles are
data from ref. 9. The steep fall-off on both sides of the 100%
polarization peak at v = 1 indicates that typically 4 spins flip
over for each charge added (or subtracted). The observed sym-
metry around the peak is due to the particle-hole symmetry
between skyrmions and antiskyrmions. By contrast, the solid
line is the prediction for non-interacting electrons.




FIGURE 4. SPECIFIC HEAT is greatly enhanced by the presence
of skyrmions. They dramatically shorten the nuclear spin-
lattice relaxation time, thus bringing the nuclei into thermal
equilibrium. Dashed line is a calculation of the contribution of
a model that assumes all nuclei in the quantum well contribute
to the specific heat. At low temperatures, nuclei in the insulat-
ing barriers just outside the well raise the specific heat beyond
this prediction.! The sharpness of this additional peak (inset
linear plot) is not well understood.

value. The exchange energy can, however, depend on spa-
tial gradients of ¢. The leading term in a gradient expan-
sion is therefore

_,1 2 2
U—Epsfd Vel?,  (3)

where the pseudospin stiffness p, has a typical value of
about half a kelvin. (In general, spin stiffness is a meas-
ure of the energy cost of twisting spins out of perfect align-
ment.) Given the xy symmetry of this model, we anticipate
that the system will undergo a Kosterlitz—Thouless phase
transition at a temperature on the order of p_.

This phase transition occurs when topological defects
(vortices) in the phase field become unbound as a result of
entropy gain, even though their interaction potential grows
logarithmically with distance. In a superconducting film,
such logarithmic interaction among vortices is due to the
kinetic energy of supercurrents circulating around the vor-
tices. But here there is no kinetic energy, and the energy
cost is instead due to the loss of Coulomb exchange energy
when there is a phase gradient. The “charge” conjugate to
the order-parameter phase ¢ is the z component of the pseu-
dospin, which is the charge difference between the layers.
Therefore the supercurrent J = p,V¢ corresponds to oppo-
sitely directed charge currents in the two layers.

One novel feature of the quantum Hall system is that
vortices in the ¢ field are “merons,” carrying one half of
the topological charge of skyrmions (see figure 5a). This
implies that a meron carries half the fermion number of
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an ordinary fermion like an electron. The easy-plane
anisotropy allows these “half skyrmions” to be topologi-
cally stable.

The onset of superfluidity below the Kosterlitz—Thou-
less temperature will manifest itself as an infinite anti-
symmetric conductivity between the two layers. One way
to observe this would be to perform a drag experiment in
which one sends current through one layer and then
measures the voltage drop induced in the other layer. In
ordinary fermi liquids, this drag is caused by collisions
that transfer momentum between quasiparticles in differ-
ent layers. Simple phase-space arguments show that this
drag voltage should vanish like T'? at low temperature.
But in the superfluid phase, where the antisymmetric
conductivity is infinite, the voltage drop must be exactly
the same in both layers. That will lead to a very large drag
that is not only opposite in sign to the usual drag effect,
but actually increases in magnitude with decreasing tem-
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FIGURE 5. (a) MERON PAIR, formed by pseudospin orientation
o, is connected by a domain wall or “string.” One half of an
extra electron (or hole) resides in each defect.”? (b) ENERGY GAP
for charge activation, as a function of magnetic-field tilt angle in a
weakly tunneling double-layer sample.'® Red circles are for filling
factor v =1, blue triangles for v = 2/3. Arrow indicates critical
angle 0. Dashed line is an estimate of the renormalization (which
we neglect) of the tunneling amplitude by the parallel magnetic-
field component at nonzero tilt angle.
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perature. Thus, as the temperature is lowered through
the Kosterlitz—Thouless point, the drag should change
sign and increase in magnitude, providing a very clear
experimental signature.

This superfluid response of a phase-coherent inter-
layer state has, in fact, not yet been directly observed.
That’s because it’s hard to prevent tunneling between the
layers when they are close enough to exhibit interlayer
phase coherence. (A new generation of experiments is
addressing this problem.) But long-range pseudospin xy
order has been observed experimentally through the
strong response of the system to a weak magnetic field
applied in the plane of the electron gases.

To understand this strong response, one has to con-
sider the effects of weak tunneling. In the presence of tun-
neling, the particle-number difference between the two
layers is no longer conserved and the global symmetry is
lost. In addition to the exchange potential energy, there is
now a tunneling energy term, which yields a preferred
value ¢ =0 for the order-parameter phase. We see from
equation 1 that the vanishing of this phase represents the
symmetric occupation of the two quantum-well states. In
the presence of tunneling, this symmetric state is lower in
energy than the antisymmetric combination.

The tunneling term induces a linear confining poten-
tial between vortices, thus destroying the Kosterlitz—
Thouless phase transition. This comes about because
pairs of right- and left-handed vortices are connected by a
“string” or domain wall (see figure 5a). The energy of such
a composite object of length L is given by
/2y

E~WL+ +2E,,., 4)

where W is the string tension (energy per unit length of
the domain wall). The second term is the Coulomb repul-
sion between the half fermions bound to each vortex, and
the third term is a constant governed by the ultraviolet
details of the vortex cores.
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FIGURE 6. DIFFERENTIAL TUNNELING CONDUCTANCE
between two adjacent two-dimensional electron gases. When
the sample’s electron density is high, the bilayer system is not
in a phase-coherent state, and the tunneling shows a Coulomb
pseudogap in the density of states. At lower electron density,
the same sample goes into a phase-coherent state in which the
electrons have strong interlayer correlations and the tunneling
exhibits a huge anomaly at zero bias.!¢

The string tension for typical sample parameters is
on the order of 0.1 kelvin per nanometer. That’s 19 orders
of magnitude weaker than the string tension that confines
quarks inside nucleons and mesons! Furthermore, the
string tension beween vortices, unlike that between
quarks, is conveniently adjustable by simply tilting the
magnetic field so that it has a component in the plane of
electron gases (see figure 5b). This tilt causes tunneling
particles to pick up a phase shift, making the order
parameter prefer to tumble spatially. That, in turn, lowers
the string tension and eventually drives it to zero, causing
a phase transition to a deconfined phase in which domain
walls proliferate.

In 1994, James Eisenstein and Sheena Murphy
observed precisely this physics by exploiting the extreme
sensitivity of the charge excitation gap to tilted magnetic
fields.’?'® As the string tension is lowered, the string stretch-
es due to the Coulomb repulsion term in equation 4. That
produces a readily observable rapid drop in the thermal acti-
vation energy needed to produce these charged objects.

The similarity between superconductivity and the
physics of interlayer phase coherence has led to several
suggestions of Josephson-like effects.’* The equations of
motion are indeed similar. But I believe that caution is
required in their physical interpretation. For widely sepa-
rated electron gas layers with no interlayer phase coher-
ence, the tunneling current is extremely weak at small volt-
ages. When an electron suddenly tunnels into an electron
gas in a high magnetic field, it i$ very difficult for the other
electrons to get out of the way of the newcomer, because the
Lorentz force causes them to move in circular paths. Thus
tunneling inevitably leaves the system in a highly excited
state, with no ground-state overlap. Energy conservation
then requires a finite voltage if there is to be any current.

By contrast, a system in a state with interlayer phase
coherence has an indefinite number of particles in each
layer, so that tunneling can leave the system in the
ground state. Another way of saying this is to note that
the tunneling operator that transfers an electron from one
layer to the other is precisely the order parameter given
by equation 2. Tunneling conductance is thus a spectro-
scopic probe of the order-parameter fluctuations. It should
have a sharp peak at zero voltage in the broken-symme-
try state, where the order parameter takes on a finite,
nearly static value. This prediction, first made by Xiao-
Gang Wen and Anthony Zee,** has recently received spec-
tacular confirmation in some beautiful experiments car-
riéd out by Eisenstein’s group at Caltech!® (see figure 6).

Other examples of pseudospin order

So far we have only discussed the case of pseudospin order
at filling factor v =1 under the assumption that the real
spins are fully aligned. Another very interesting situation
at total filling factor v = 2, has recently been investigated
theoretically by Sankar Das Sarma, Subir Sachdev and
collaborators, and experimentally by Aron Pinczuk and
his collaborators.!” At v =2, the situation is quite rich:
There are four nearly degenerate levels (two spin and two



isospin) producing a novel mixing of the pseudospin and
real-spin order parameters that leads to a “canted anti-
ferromagnetic” state for the real spins. The low-frequency
fluctuations in the resulting xy order parameter have
been indirectly observed in light-scattering experiments.

In addition to the examples we have focused on here,
there are several other examples where states of different
Landau level, spin and/or electric-subband indices can be
made degenerate by tuning tricks such as tilting the
applied magnetic field. If the electron orbitals in question
have little overlap, the pseudospin anisotropy tends to be
of the easy-plane variety. But if the orbitals are fairly sim-
ilar, the anisotropy tends to be of the Ising-like easy-axis
type, leading to rather different physics, including the
possibility of first-order phase transitions.8

This article is based in part on lectures given in Les Houches.
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