THE ORIGINS OF
MATHEMATICAL PHYSICS:

NEW LIGHT

ON AN OLD

QUESTION

magine that you have to

start science from scratch.
Upon what disciplines
should you draw? Philoso-
phy, for instance, discusses
the nature of time, space,
and reality. Religion, too,
tries to make sense of the
world as a whole; and so,
sometimes, does literature.
Several disciplines—for
example, biology and medi-
cine—deal with special and
highly significant features of the world. Such are the most
natural ways to begin thinking about the world, and, in
fact, most cultures make sense of their world through a
combination of such intellectual resources. Mathematics,
in comparison, appears like a non-starter. Here is a theo-
ry dealing with abstract objects, aiming at internal coher-
ence rather than at connection to any external reality. All
cultures develop some ways of dealing with calculation
and measurement, and in some societies, a more abstract
discipline, a “mathematics,” may also emerge. But it is a
peculiarity of the modern world to take this abstract dis-
cipline as the cornerstone for science.

In this respect, as in many others, modern science is
Greek: The strange combination of mathematics and
physics is a Greek invention, pioneered by Archimedes.
Modern science is a mythical monster: half-goat, half-
bird. The student of physics is led simultaneously to the
laboratory, to face the phenomena of physical reality; and
to the math course, to forget about the phenomena and to
contemplate pure abstractions. That this hybrid existence
is at all fertile is amazing: We use it, because we have dis-
covered its effectiveness through experience.

But just what went through the head of the person
who first tried to put this combination to work? Why
marry the goat to the bird in the first place? In Syracuse,
Sicily, in the third century BC, Archimedes set out in a
series of works to combine physics and mathematics. How
did he manage to do it? And why did he believe it was
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A recently resurfaced tenth century
manuscript, the Archimedes Palimpsest,
includes the sole extant copy of
Archimedes’s treatise, the Method. As
scholars begin study, new insights into
Archimedes are emerging.

Reviel Netz

worth the try?

In October 1998, a man-
uscript containing some of
Archimedes’s works, known
to scholars as the Archi-
medes Palimpsest, resur-
faced from long obscurity
and was sold in New York
for two million dollars. The
private owner has, with
great generosity, agreed to
make it available for
research and publication.
This manuscript, shown in figure 1 and on this month’s
cover, is a unique source of evidence for Archimedes’s
thought. Among its many treasures is the only evidence
we have for the treatise known as the Method, in which
physics and mathematics are most intimately combined
by Archimedes.

As seen in figure 1, the Archimedes manuscript has
been overwritten by a twelfth century prayer book.
(Palimpsestos is the Greek word for rescraped, or overwrit-
ten, parchment.) Work is only just beginning on uncovering
and studying the original text. Many scholars in the field
hope we are near a much better understanding of
Archimedes. I have looked at the palimpsest, and I believe
this hope is well founded. In this article, I delineate some of
Archimedes’s originality, give an example of the new infor-
mation the Archimedes Palimpsest may provide us, and I
suggest, tentatively, what Archimedes’s mathematical
physics may have meant.

Archimedes’s originality

“Give me a place to stand, and I shall move the Earth”—
Archimedes may indeed have said this: Among the wealth
of anecdotes and legends surrounding the man, this is
perhaps one of the more plausible.! He was referring to
the law of the lever, which (in the variant form of the law
of the balance) he had proved in his treatise, Planes in
Equilibrium. One can say that Archimedes moved the
Earth—in principle—without standing anywhere: Pure
thought alone showed how the Earth must behave.

Ernst Mach, who in the beginning of this century
offered a philosophy of science in which science was
assumed to do no more than arrange sensory input,
thought Archimedes’s proof of the law of the lever was
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FIGURE 1. ARCHIMEDES PALIMPSEST as it appears today. In the 12th century, the text of a prayer book (horizontal) was written
over the original Greek text (vertical)—here, a section of Archimedes’s treatise, On Floating Bodies. The cover of this month’s issue
shows the same pages, rotated 90° and digitally enhanced to highlight the underlying text. (Figure © Christie’s Images, New York.)

flawed. Effectively—so Mach argued—Archimedes had
reasoned in a circle, taking for granted his main result.
Otherwise, how could he obtain a physical result without
any experiment? However, Mach failed to see the way
Archimedes’s proof worked: No circular reasoning was
involved.! The way in which Archimedes manages to have
satisfactory physical proofs, based purely on conceptual
considerations, may be neatly illustrated by a closely relat-
ed proof, found in Planes in Equilibrium and presented in
box 1: that the center of the weight of a triangle lies at the
intersection of its medians. (The modern term “center of
gravity” should be avoided for Archimedes, as it misrepre-
sents both his language and his underlying thought.)

This proof is one of the earliest and most simple
applications of mathematics to physics. Archimedes went
on to a backward application: using such physical results
to derive results in pure mathematics.

Archimedes died in 212 BC, but what may be his most
interesting work—the Method —came to the attention of
modern readers only in 1906 AD, following the initial dis-
covery of the Archimedes Palimpsest. The treatise is sure-
ly one of the longest-neglected pieces of intellectual lega-

cy in the history of science. It is fascinating to speculate
how the history of science might have looked with Galileo,
say, aware of its existence. For it is in this work that
Archimedes most explicitly connects the mathematical
and the physical. He claims here that he has invented a
procedure that allows him to use physics—in particular,
mechanics—to derive mathematical results. Archimedes
derives a wide range of results, including such highlights
of his mathematical achievement as the volume of the
sphere and the volumes of segments of solids of revolu-
tion. Box 2 presents a relatively simple case, the one that
Archimedes himself took as a representative example for
the method of the Method.

The reader will notice from box 2 that, besides antic-
ipating mathematical physics, Archimedes further antici-
pates, perhaps, the integral calculus. The summation of
areas through lines—and of solids through areas—is a
feature of the Method that Archimedes may have consid-
ered to be less than rigorous. It is probably for this reason
that he considered this treatise merely as heuristics, lit-
erally a “method.”

The combination of the two types of proofs—from
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Box 1. From Mathematics to Physics

his figure shows a triangle whose three sides are bisected

at E, Z, and A, giving rise to four equal small triangles,
each similar to the original triangle. We hypothetically
assume that the center of the weight is 7o on the median AA
but at ®. Take A and K as centers of the weight of their
respective small triangles, and bisect AK at N. Now, apply
the postulate (explicitly stated by Archimedes) that, in simi-
lar figures, the centers of the weight are similarly situated.
(Archimedes rigorously defines the concept of “similarly sit-
uated,” but it may be intuitively understood as the congru-
ence of the centers of the weight once the similar figures are
made to scale). From this postulate, we have AG®||ZA|EK,
and a simple geometrical consideration shows that
ZA||EK|IMN as well, so that finally we have AO|MN. N
must also be the center of the weight for the composite object
made of the two small triangles centered at A and K (a direct
result of another postulate: Equal weights balance at equal
distances). The remainder of the triangle is the parallelogram
AEAZ, and Archimedes has shown in an earlier proof that
the center of the weight of a parallelogram is on its intersec-
tion of the diagonals (rigorously proved by Archimedes,
expanding what is essentially a symmetry intuition). The cen-
ter of this remainder is, therefore, at the point M. Thus the
center of the whole triangle, ®, must be somewhere on the
line MN, which is impossible (because of the parallels).
Therefore, the center of the weight must be on the median
line—that is, on the well-defined point of the intersection of

mathematics into physics and then from physics into
mathematics—closes a circle. By thinking of triangles and
their symmetries and similarities, one finds the center of
the weight of any triangle; by thinking of centers of the
weight, one finds the area of a parabolic segment. But
what did Archimedes himself think of, primarily: balances
and weights, or triangles and segments? In several ways,
the Archimedes Palimpsest may shed some light on this
question. I now consider one of those ways.

What can the palimpsest tell us?

When asking what a scientist had in mind, we should
examine all the available evidence. Even an unconscious
doodle may offer some clues to what the author was think-
ing. It is, therefore, necessary to reproduce faithfully all
the evidence. As yet, this has not been done for
Archimedes. Refer to the figure in box 2, which is based on
the works of Archimedes published by the Danish philolo-
gist Johan Ludvig Heiberg. This figure does not represent
the actual diagram seen in the Archimedes Palimpsest.
There, the diagram is more like figure 2. Whereas the box
figure is technically “correct,” figure 2 is “incorrect.” For
instance, the size relations KB = Y,KI" = %/,0K may be seen
in the box figure but not in figure 2. Furthermore, while
the box figure has a bona fide parabolic segment, figure 2
has a segment of a circle, crudely drawn.

It is probably for just this reason—that figure 2 is
“wrong”—that Heiberg chose to ignore the diagrams of the
manuscript and instead produced his own, “correct” fig-
ures. In doing so, however, he may have suppressed an
important piece of evidence about Archimedes.

Drawing on the corpus of diagrams in all the treatis-
es by Archimedes in all the extant independent manu-
scripts, I believe the following claims can be made:
>The diagrams in the Archimedes Palimpsest stem ulti-
mately from antiquity, in great probability from
Archimedes himself.
>The diagrams display a consistent visual logic. While
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all median lines (at one-third of each median line).

Since “center of the weight” is a concept with physical
implications—it is the point from which the plane can be sus-
pended and remain in balance—we have just given a mathe-
matical proof of a physical result: If you take a triangle and sus-
pend it from a median line, at its third, it will remain balanced.

A

Heiberg aims to represent actual ratios and figures,
Archimedes himself produced a schematic figure.
Archimedes’s diagrams show mainly the relations of con-
figuration and identity: which are the objects participat-
ing in the proposition, and what are their relations of
intersection and inclusion. There is little attempt to show
the “real shape” that the objects have.

If these conjectures are the case, then it is no longer
valid to think of the box 2 figure as “correct” and of figure
9 as “incorrect.” The palimpsest gives us an insight into
the particular way in which Archimedes visualized his
objects.

This type of visualization is used throughout
Archimedes’s writings, independent of subject matter. The
fact that the Method deals, in a sense, with physical
objects does not make its diagrams any different from
those in his strictly geometrical works, such as On Sphere
and Cylinder. Indeed, the diagrams are strictly geometri-
cal, not only in the works on the lever (on which this arti-
cle concentrates), but also in his hydrostatic masterpiece,
On Floating Bodies, whose physical objects are much
more visibly discussed, with questions of weight and spe-
cific weight. A diagram from this work, as found in the
palimpsest, appears on the cover of this issue.

The figures for On Floating Bodies, uniquely for
Archimedes’s works, are systematically different between
the two extant manuscripts for this treatise. One may
compare the diagram on the cover to figure 3, which
essentially reproduces the figure of the alternative tradi-
tion preserved in a Latin translation from the 13th centu-
ry. We are not yet in a position to identify the correct dia-
grams for On Floating Bodies, but we know their visual
logic, which is always schematic rather than pictorial.

Obviously, the way in which a scientist represents an
object may throw some light on the way in which that
object is conceived. I now move on to offer, tentatively, an
interpretation of Archimedes’s conception of his objects.



Box 2. From Physics to Mathematics

This figure represents the first proposition of the Method. The
curved area ABT is a closed parabolic segment. We have
AA=AT, AB a diameter, I'Z tangent to the segment, and AZ par-
allel to AB. Let EM be an arbitrary line parallel to AB and AZ.
Through the properties of the parabola, we get the key result
that TA:EA:ME:EO, that is, TK:KN:MZ:Z0.

We now set ®K=TK, so we also have the relation
OK:KN::ME:EO.

We imagine OE positioned as TH, with its center at ©, and
we have the line ME, positioned with its center at N. From the
relation above, the two lines M= and ZO are to each other,
reciprocally, as their distances from the point K. If we imagine
a balance with its fulcrum at K, carrying M= on one side and
TH (that is, OE) on the other side, then the balance will be at
equilibrium.

The above procedure deals with an arbitrary line; repeating
it for all parallel lines, we balance each and every line of the tri-
angle with its correlated line from the parabolic segment. The
entire triangle is now at equilibrium with the parabolic seg-
ment: the triangle where it is right now, the parabolic segment
relocated so that it is centered on the point 0.

But wait—we actually know where the center of the weight
of a triangle is! Namely, it is at the point X, one-third of the
way along the medial line KI'. The triangle and the parabolic
segment balance around the point K, and their centers of the
weight are, respectively, X and ©.

Since the two geometrical objects, the triangle and the par-

A tentative conclusion

Let us go back to the proposition showing the location of
centers of the weight in triangles (box 1). All we needed to
do was to make a few assumptions: that equal weights
balance at equal distances and that the centers of the
weight of similar objects are similarly situated. Both
assumptions are plausible, and so we may take them on
board, at least tentatively. This is all Archimedes ever
does, because he explicitly postulates those assumptions.
The structure of the application of mathematics to physics
by Archimedes, then, is this: by making explicit, clear
assumptions, one draws the logical implications of the
assumptions, which then have to hold for the world—as
long as the assumptions themselves do. Archimedes did
not prove that the centers of the weight of triangles are
physically located one-third of the way along the median
line. All he proved is that this result follows from some
plausible assumptions. As a correlate, one may say that
Archimedes proved that if the centers of the weight of tri-

abolic segment, balance each other at distances whose ratio is
1:3, then this must be, reciprocally, the ratio of the two geo-
metrical objects themselves: The parabolic segment is one
third of its enclosing triangle. Thus one of the major quests of
Greek mathematics—finding the ratios between rectilinear and
curvilinear figures—has been accomplished.
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angles in the actual physical world are not at the point
mentioned, then at least one of the plausible assumptions
is, in fact, wrong. One can imagine Archimedes trying to
balance extra-thin triangular slices to find their centers of
weight, and in this way to find the fundamental structure
of the universe of weights. This, indeed, is rather like
what Gauss was to do, two thousand years later, when he
finely measured the sum of angles in physical triangles to
determine the geometry of the universe.

Yet T do not believe Archimedes did anything of the
kind. My suggestion is that Archimedes was largely indif-
ferent to the question of where physical triangles balance.
There are three main reasons for thinking this was the case:
>The straightforward reading of Archimedes’s text
strongly suggests his indifference to actual physical prop-
erties. Once the physical presuppositions are explicitly set
out, all the arguments are strictly geometrical.
Archimedes plunges directly into speaking about trian-
gles, lines, and segments—using a purely geometrical jar-
gon and making no reference to the idealizations involved
(objects have thickness, weight is not uniform, and so on).
This, I suggest, is because no idealization takes place: The
discussion is not about idealized physical objects, but
directly about geometrical triangles, whose “weight” is
simply their area.

FIGURE 2. ARCHIMEDES’S FIGURES are schematic, rather than
precise, illustrations. Thus this figure—from his treatise, the
Method, found in the palimpsest—is not as accurate as the one
shown in box 2. This diagram has not yet been digitally
enhanced. (Adapted from a drawing prepared by Dr. William
Noel, manuscript curator at the Walters Art Gallery, Balti-
more, Maryland. My thanks go to him and to the owner of the
manuscript for permission to reproduce the drawing.)
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Box 3. The Eurekas of Archimedes

Archimedes made many discoveries. Some, perhaps most,
he committed to writing, and some of these writings, per-
haps most, survived. The most remarkable of them, the
Method, survives only thanks to the Archimedes Palimpsest.

The palimpsest contains, in more or less fragmentary form,
seven works by Archimedes. The first three form a natural
sequence in mathematical physics:
> Planes in Equilibrium. Archimedes proves the law of the bal-
ance and derives results for centers of gravity in planes.
>On Floating Bodies. Here he proves his law of buoyancy and
derives results for the flotation of solids of geometrically inter-
esting shapes.
>Method. As illustrated in the main text, the law of the bal-
ance is used to derive geometrical properties.

Next come four studies in pure geometry:
I>Spiral Lines. Spirals are first defined and their lengths and
areas are measured.
I>On Sphere and Cylinder. Archimedes provides the ratios for
the surface area and volume of a sphere and then solves a series
of problems concerning spheres.
B>Measurement of the Circle. An approximation of the value of
 is obtained using a method that can, in principle, be extend-
ed indefinitely.
[>Stomachion. Only a fragment survives. Apparently, this is a
study in a tangram-like game, where areas are covered by given
geometrical figures.

Three further works of Archimedes have survived in
Greek in other manuscripts:
>Quadrature of the Parabola. Related in certain ways to the

D>Further, this is the implication of the contexts in which
the theory is used. We never see Archimedes deducing
anything about the physical world (as is standard in mod-
ern physical writings). On the other hand, the theory is
indeed applied—but in geometrical contexts, such as the
Method.

D>Finally, I suggest we use the evidence of the diagrams as
further indication of the thinking behind the propositions.
In all of Archimedes’s proofs, whether strictly geometrical
or more “physical,” the same visual logic is in use. Nowhere
is an attempt made at pictorial accuracy. In modern
mechanical writings, beginning with the Italian Renais-
sance, precise and specific drawings often accompany the
mathematical discussions, underscoring the intended
application of mathematics to the physical world. For
Archimedes, however, the object in its visual reality is of
lesser importance. The diagram is not a picture, but instead
provides the arena for geometrical proof.

If this is true, we have found a simple answer to our
original question regarding how mathematical physics was
originally conceived —namely, because it was mathematics.

The basis for this conclusion is extremely simple: The
one common denominator for all of Archimedes’s writings,
whether “physical” or “mathematical,” is that they all pro-
vide proofs. Proof was the real passion of Archimedes—
and that of his culture in general. The Greeks were for-
ever arguing, refuting, and attempting to provide
irrefutable arguments. Out of this consummately argu-
mentative society came that unique form of expression
that is characterized by its stress on argument, and on
argument alone: the Greek mathematical, deductive
argument.® And if what counts is to have a correct argu-
ment, it becomes of minor significance to know where tri-
angles actually balance, especially because, if you attempt
to balance physical triangles, you open yourself to all sorts
of objections. So why even bother messing with the phys-
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Method, this is an exploration of the applicability of the law of
the balance to geometry.

D>Sand-Reckoner. In this complex mlscellany, Archimedes sets
out to measure how many grains of sand it would take to fill
up the universe, in the process contributing to astronomy as
well as to calculation techniques.

I>Conoids and Spheroids. Archimedes introduces the solids of
revolution of conic sections, and provides several measure-
ments for those figures.

Archimedes may also have been the author of the Caztle
Problem, a numerical problem comparable in spirit to the
Sand-Reckoner, although the attribution is nowhere directly
founded. An Arabic text, On Lemmas, showing various con-
figurations of circles and measurements concerning them, may
be derived from Archimedes; the same may be said, with even
less confidence, of an Arabic treatise on the Construction of the
Regular Heptagon. We know for sure, on the authority of the
knowledgeable commentator Pappus, that Archimedes had
produced a work (now lost) on Semi-Regular Solids (the faces
of which are all regular, though not identical).

One may go on counting, beyond these 14 works, well into
the realm of myth, as recounted by Greek and Arabic stories
on Archimedean feats of engineering and proof. We cannot
know how much the Archimedean corpus originally con-
tained. However, we do have a relatively large body of sur-
viving works—more representative, probably, than for any
other mathematician from antiquity: None of the others
appears to us with as well-defined a scientific personality.

ical? In geometry, Archimedes could be irrefutable. My
sense is that this is where he preferred to remain.

If this assessment is correct, we may also see why
mathematical physics is such a good idea. It embodies the
principle that one should aim for the best possible argu-
ments, using the discipline in which the highest standards
of proof are available. Mathematics may have little to say,
directly, about the physical world, but it is the only way to
say anything at all with any certainty. The bet of modern
science —following on Archimedes—is that we are willing to
say very little, as long as what we say is well argued. Good
arguments are good starting points for truly productive dis-
cussion, and so it is not surprising that the mathematical
route has been so productive in modern science.

But is this interpretation true? It is only a possibility,
suggested by the writings of Archimedes. He explicitly
says very little about his goals and conceptions. When—as
the legend goes—he cried “Eureka,” sallying forth from
the bath, this may have been because he had discovered
truths of physics. Or he may have discovered new proper-
ties of geometrical solids. Like the citizens of Syracuse, we
cannot really tell, but can only gape at his discoveries
with amazement. We are extremely fortunate that now,
thanks to the Archimedes Palimpsest, we shall be able to
gape from a bit closer.

The Archimedes Palimpsest

Although the Archimedes Palimpsest is an “Archimedes
manuscript,” it was not written by the man himself. Far
from being an autograph from the third century BC, it is
a manuscript written in the tenth century AD. The
palimpsest is only one among six extant independent
manuscripts for Archimedes. It contains seven works (see
box 3 on Archimedes’s achievement). Of these, only the
Method and the Stomachion are not available from the
other manuscripts. The palimpsest is fragmentary and



contains many obvious mistakes. It is an ugly piece of
parchment, scorched and seriously suffering from mold.

Such characteristics are typical for ancient works.
Very little evidence for ancient authors survives from
before the 9th and 10th centuries AD: The palimpsest is,
by a long stretch, the earliest evidence we have for
Archimedes. It is uncommon to have but a single inde-
pendent manuscript for an author. All manuscripts are
riddled with errors, and most are, to some extent, incom-
plete. And while many manuscripts are things of beauty,
their significance lies elsewhere.

What makes a manuscript significant? Being inde-
pendent (that is, not copied from any other surviving man-
uscript), and unique (no other parallel manuscript with the
same texts exists). The Archimedes Palimpsest is fully
independent of all other Archimedes manuscripts, and it is
the only one to be a unique source for any of his works. It is
thus the most important Archimedes manuscript.

A manuscript is rather like a planetary probe. The
results of a single probe are tantalizingly incomplete, yet
they are also uniquely significant. The comparison
becomes precise in that a manuscript is like a probe sent
to us: a time capsule from Archimedes.

The travels undergone by this particular capsule
were especially arduous. It was put together in the tenth
century, but, judging from the total absence of marginal
notes or corrections, it seems never to have been read by
any mathematician. That it fell into disuse is clear from
its fate: Two hundred years later, Greek monks used it as
scrap parchment. They cut each page into two and dis-
carded some pages. They scraped each page as clean as
they could. Finally they wrote a prayer book on the
scraped leaves, making this a re-scraped manuscript, lit-
erally a “palimpsest.”

(The monks should not be considered villains. They
have very much saved Archimedes, inadvertently, by recy-
cling him, and they can not be blamed for seeing no value
in a work which, possibly, no one alive then could read and
follow. Had it not been for the Greek Church, practically
nothing would have survived from Greek antiquity.)

The adventures of the palimpsest in the ensuing
seven hundred years are more difficult to follow. An ex lib-
ris, once present in the manuscript but since disappeared,
hailed from the Mar Saba monastery near the Dead Sea,
in today’s Palestine. The palimpsest may have then
passed to the Church of the Holy Sepulchre in Jerusalem,
and certainly, by the mid-19th century, it reached the
church of the same name in Constantinople (now Istan-
bul). There it lay for the remainder of the century.

Meanwhile, the Danish scholar Heiberg began to pub-

FIGURE 3. ON FLOATING BODIES has two different styles of
figures. Compare those shown here, as found in a Latin tran-
scription, and those from the Archimedes Palimpsest, seen
on the cover and in figure 1. (Adapted from M. Clagett,
Archimedes in the Middle Ages, American Philosophical
Society, Philadelphia, 1978.)

lish, almost single-handedly, ancient Greek mathematics,
starting with his first edition of the works of Archimedes
in 1880. Twenty-six years later, his attention was brought
to a library catalogue mentioning “some mathematics in a
palimpsest” and quoting a few words. A glance sufficed:
This was Archimedes. Visiting Constantinople, Heiberg
managed to read much of the palimpsest using only a
magnifying glass. Anyone who has looked at the
palimpsest today (see figure 1) must admire the genius
and patience shown in Heiberg’s second edition,? pub-
lished in the years 1910-1915.

In the aftermath of the First World War, in which the
Greeks were largely expelled from present-day Turkey,
many works were cast in all directions. The manuscript’s
fate during this time is shrouded in mystery, but clearly,
no scholar since Heiberg himself had had access to this
manuscript, which was privately and secretively owned.

This state of affairs came to a dramatic end in 1998,
when suddenly the manuscript appeared for sale at
Christie’s in New York. Legally contested by the Greek
Orthodox Church, the sale was allowed to proceed by a
last-minute court decision. The Greek government took
the challenge and sent a representative to the sale. At
around one million dollars, all the contenders dropped
out, with two exceptions: the Greek representative and
the representative of a private collector. The private col-
lector held steady for two million dollars, which Greece
was unable to match.

The new owner (who wishes to keep his anonymity)
made clear from the start that the manuscript would be
made available for scholarly study. The manuscript was
publicly exhibited in American museums and is currently
being conserved at the Walters Art Gallery in Baltimore,
Maryland.* Plans for the future include a path-breaking
technological effort to produce a text based on digital
image analysis and enhancement. Indeed, while Heiberg’s
edition is remarkably accurate given the means available
to him, much can be clarified with today’s technologies.
This prospect alone is certain to make the recent resur-
facing of the Archimedes Palimpsest a historical moment
for the study of ancient science. At long last, we are in a
position to discharge our duty to Archimedes: to publish
the best possible edition of his works—to recover, in the
fullest detail, the time capsule he has sent us.
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