LETTERS

Oppie’s Colleagues Affirm His Leadership
in Manhattan Project

s former members of the

wartime Los Alamos laboratory,
we were appalled by Lawrence Cran-
berg’s letter (PHYSICS TODAY, Sep-
tember 1999, page 78), questioning
J. Robert Oppenheimer’s leadership.

Oppenheimer was a brilliant
leader of Los Alamos. He had an
unusually quick mind, understand-
ing any new fact immediately and
assimilating it in the overall picture
of the project. At all times he was
fully informed on all of the scientific
developments, whether theoretical or
experimental, in physics, chemistry,
or metallurgy, that were relevant to
the success of the project. He knew
what was happening in the machine
shops, and where Los Alamos was in
terms of procuring whatever was
needed. He was aware of both the
latest successes and the most impor-
tant unresolved questions. And he
kept us all informed.

To keep the scientific staff current
on the project’s progress, Oppie
established three levels of continuing
communication. First was the gov-
erning board of about ten people who
made the decisions on the scientific
program. Second was the coordinat-
ing council of about 60 people, includ-
ing group leaders and other senior
scientists, where the participants
reported their recent successes and
ongoing problems. Often a person
from a quite different part of the lab
would make useful suggestions. And
third, he established the general collo-
quium, open to about 300 people,
including all the PhDs and a few oth-
ers who were informed of the progress
and prospects of the laboratory.

The result of this openness was
that we all felt that we were part of
the lab and that each of us was per-
sonally responsible for its success.
The ability to foster this esprit, to
get the very best from every mem-
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ber, is what makes a great leader of
a large project, not the leader’s indi-
vidual contributions to the solution.
Oppie made those as well.

But his greatest contribution was
his insistence on this freedom of
communication inside the laboratory.
This was much against the wishes of
General Leslie Groves, the overall
project leader, who wanted informa-
tion strictly compartmentalized.
General Groves was a very difficult
boss who was not very fond of scien-
tists in general and Oppie in particu-
lar. Perhaps the best evidence that
Oppie was, in fact, a very good
leader of Los Alamos is that Groves
kept him despite the difficulties in
their personal and professional
relationship.

Cranberg suggests that Los Alam-
os was merely needed to solve the
engineering problems once the chain
reaction was established. That is, in
fact, what we believed when Los
Alamos started work in March
1943. But it turned out not to be
true. In the spring of 1944, one of
the Los Alamos groups discovered
that plutonium-240 has a strong ten-
dency to fission spontaneously. This
meant that a plutonium bomb would
explode before it was fully assem-
bled, and would then explode with
only a small fraction of the design
yield. This discovery was science, not
engineering, and was not accidental.
Oppie had established groups to
investigate any phenomena that
might prevent an atomic explosion.
Spontaneous fission did raise a
potential problem. Other groups did
not find any troubles.

Because of this potential problem,
we had to find a way to assemble the
bomb very rapidly indeed. The way
to do this was by implosion, which
already had been suggested by Seth
Neddermeyer in 1943. He had imme-
diately been given a group to study
it. Unfortunately, instead of assem-
bling material, so far the group had
only been able to shatter it.

A solution was offered by a
British physicist, James Tuck, who
had used explosive lenses to convert
a divergent explosive wave to a
plane wave. Oppenheimer immedi-
ately reorganized the laboratory.

Famous physicists such as Luis
Alvarez, Ed McMillan, and Bruno
Rossi, and many less well-known sci-
entists, were assigned to ensuring
that implosion could yield a spherical-
ly symmetric assembly. And Oppie
recruited the greatest scientific expert
on explosives in America, George Kis-
tiakowsky, to direct the work.

All of this is to answer positively
Cranberg’s statement “it is hard to
say exactly what credit belongs to
Oppenheimer.”

Enrico Fermi was one of the great
scientists of the 20th century. One of
us, Hans Bethe, was Fermi’s student
for a year and has tried to follow his
method of research ever since. Fermi
and his small group achieved the
first man-designed chain reaction in
uranium on 2 December 1942. His
German competitors were still far
from this result in 1945. Before the
war, Fermi and his group in Rome
had made an exhaustive study of the
action of neutrons on numerous
nuclei, uncovering many principles
that are now fundamental in nuclear
physics. Fermi was the world master
in inspiring small groups of ten or so
scientists. He never wanted to lead a
big laboratory.

Let Fermi and Oppenheimer each
be remembered for their great
achievements: Fermi as a great sci-
entist, Oppenheimer as the leader of
a great scientific laboratory.

HANS A. BETHE

Cornell University

Ithaca, New York

ROBERT CHRISTY

California Institute of Technology
Pasadena, California

The Nitty Gritty on

Compatible Families

he article by Robert Griffiths and

Roland Omneés (PHYSICS TODAY,
August 1999, page 26) is an attempt
to provide an interpretation of quan-
tum mechanics that eliminates the
concept of measurement. It provides
excellent reasons for getting rid of
measurement. However, it also rais-
es troubling questions.

As Griffiths and Omneés empha-
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size, the relation between probability
and quantum mechanics is subtle. In
the mathematical theory of probabil-
ity, there is a given family of events.
Each event has a probability. The
probabilities satisfy the additivity
property: For every pair of events A,
B, the probability of the event A is
the sum of the probability of the
event (A and B) with the probability
of the event (A and not B). The addi-
tivity property is necessary if the
probabilities are to have a frequency
interpretation.

There is a somewhat analogous
structure in quantum mechanics,
and it is natural to define a quan-
tum event to be a projection opera-
tor. The quantum state assigns a
probability to each quantum event.
Commuting projection operators are
compatible quantum events. The
conjunction (A and B) of compatible
quantum events is the operator
product AB. The identity operator I
that projects onto the entire Hilbert
space corresponds to an event that is
sure to happen. The negation (not B)
is then I — B. For each family of com-
patible quantum events, the proba-
bilities of the events in the family
satisfy the additivity property. The
consistent-histories theory deals
with families of quantum events that
need not be compatible. If the events
in such a family satisfy a consistency
condition relative to the quantum
state, then again their probabilities
obey the additivity property. Every
compatible family of quantum events
is a consistent-history family.

Suppose (as is usual in physics)
that the physical meaning of proba-
bility is given by the frequency inter-
pretation. As a precaution, however,
consider that this interpretation may
be relative to the consistent-history
family. That is, given a consistent-
history family, for each quantum
event in the family there is a corre-
sponding physical event to which the
frequency interpretation applies.

In this spirit, consider the follow-
ing premise concerning a system
undergoing a certain physical
process: The probabilities for each
consistent-history family describe
the frequencies at which physical
events occur when the physical
process occurs repeatedly. This
premise is denied by an interpreta-
tion of quantum mechanics in which
there are corresponding physical
events only when a measurement is
being performed on the system. In
such interpretations, only the prob-

72 JUNE 2000 PHYSICS TODAY

abilities for quantum events in the
consistent-history family selected
for measurement describe the fre-
quencies at which physical events
occur. The premise could also be
denied by an interpretation of quan-
tum mechanics in which there are
corresponding physical events only
when a physicist chooses to reason
about them. That would be selection
by whim, rather than by measure-
ment. However, it should hold for
any interpretation in which there is
no particular context that gives
preference to one consistent-history
family over another. The following
argument shows that, under one
additional and rather natural
assumption, this premise leads to

a contradiction.

The assumption links different
compatible families: If one compati-
ble family is contained in another
compatible family, then the physical
events in the smaller family occur
precisely when the corresponding
physical events in the larger family
occur. One can imagine a theory in
which this assumption is violated.
For example, consider a system of
two distinguishable spin Y/, particles.
Say B is a quantum event associated
with the first particle (a certain spin
component is Y/;), while C’ is a quan-
tum event associated with the other
particle (some other spin component
is —%;). One can consider these spin
components of the two particles
together. Then the compatible family
is generated by B, C’. Or one can
single out the first particle and
ignore the other. Then the compati-
ble family is generated by B alone. It
might happen in a particular realiza-
tion that the physical event defined
by (B and not C’) for the two-particle
family occurs, while the physical
event defined by B for the one-parti-
cle family does not occur. Thus, with-
out the assumption, the relation
between quantum events (as mathe-
matical objects) and physical events
(to which the frequency interpreta-
tion applies) becomes complex.

Next, recall the system first intro-
duced by John Bell (see the appendix
of David Wick’s book! for an elemen-
tary account). There are two distin-
guishable spin Y/, particles in a cer-
tain quantum state. There are quan-
tum events A, B, C associated with
the first particle (certain spin compo-
nents have value Y,), and there are
quantum events A’, B’, C’ associated
with the second particle (the corre-
sponding spin components have
value ~'/;). Each quantum event
associated with the first particle is

compatible with each quantum event
associated with the second particle.
Each of A, B, C, A’, B’, C’ have prob-
ability Y,. Also, each of (A and A"), (B
and B’), (C and C’) have probability
/y. (These probabilities imply that,
with probability 1, the quantum
events A, A’ are equivalent, and sim-
ilarly for the other corresponding
pairs.) Finally, each of (A and not
B’), (B and not C’), (C and not A")
has probability %s.

Imagine many repetitions of the
physical situation. First, consider
the family generated by B, C'. Con-
sider a repetition in which the physi-
cal event defined by (B and not C")
relative to this family occurs. In par-
ticular, the physical event relative to
this family defined by B occurs.
Next, consider the family generated
by B alone. Then, by the assumption,
the physical event defined by B for
this family also occurs. In turn, con-
sider the family generated by B, B".
Again, by the assumption, the physi-
cal event defined by B occurs. Hence,
by the probability prediction, B’
occurs. In the same way, consider the
family generated by B’ alone; again
the assumption implies that the
physical event defined by B’ occurs.
Finally, consider the family generat-
ed by A, B'. Again, by the assump-
tion, the physical event defined by B’
relative to this family occurs. In par-
ticular the physical event defined by
(A and not B’) relative to this family
does not occur. The conclusion is that
in no repetition is there a simultane-
ous occurrence of the physical event
defined by (A and not B’) and of the
physical event defined by (B and not
C”). In fact, there is never a simulta-
neous occurrence of two of the three
physical events defined by (A and
not B’), (B and not C”), (C and not
A’). So the frequency of occurrence of
at least one of these three physical
events must be less than %/ This
conclusion contradicts the probabili-
ty prediction of quantum mechanics.

Some proponents of the consis-
tent-histories theory formulate
“rules” of interpretation. Thus, Grif-
fiths states, “A meaningful descrip-
tion of a (closed) quantum mechani-
cal system, including its time
development, must employ a single
framework.” Similarly, Omneés says,
“Every description of a physical sys-
tem should be expressed in terms of
properties belonging to a common
consistent logic.” These rules are
extraordinarily obscure. Apparently,
different descriptions may use differ-
ent consistent logics, but how are
these descriptions related? The rules



clearly limit the possibilities of
description of a quantum system.
Perhaps they could be invoked to
claim that a multistage argument,
each of whose individual stages is
correct, is globally inadmissible.
However, such a claim would cast
more doubt on the rules than on the
argument.

The rules remind us that there is
no general notion of conjunction of
quantum events. However, the argu-
ment presented above uses the con-
junction of compatible quantum
events, for which there is no prob-
lem. The argument does combine
physical events, but only according
to the following principle. Consider a
sequence of repetitions of the physi-
cal situation. Suppose that, for each
physical event, for each repetition
there is a corresponding occurrence
or nonoccurrence. Then, for each rep-
etition, for each physical event there
is a corresponding occurrence or
nonoccurrence. In particular, for
each repetition and each pair of
physical events, there is or is not a
simultaneous occurrence. This math-
ematical commonplace has nothing
to do with quantum mechanics; it is
inherent in the frequency interpreta-
tion of probability in any domain.

Nevertheless, it seems to be at
the heart of the issue.*
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GRIFFITHS AND OMNES REPLY: The
issues raised in William Faris’s
letter require a technical response,
and we apologize in advance to read-
ers who may find it difficult to fol-
low. Fortunately, we do not have to
deal with consistency conditions; it
will suffice to discuss probabilistic
descriptions of a quantum system at
a single instant of time.

Standard probability theory*
requires a sample space of mutually
exclusive possibilities or “points,” an
event algebra that, in the simplest
case, is the collection of all subsets
of points of the sample space, and a
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probability distribution (or meas-
ure). In the consistent-histories
approach, the sample space of a
quantum system is given by a
decomposition of the identity opera-
tor: a collection of mutually orthogo-
nal projectors (orthogonal projection
operators) onto orthogonal sub-
spaces of the quantum Hilbert
space, which constitute a set of
mutually exclusive properties of the
quantum system. In the case of a
spin-half particle, the two properties
S,="Y and S, = -, where w is
some direction in space, constitute a
quantum sample space.

It is a characteristic of quantum
physics that two sample spaces L
and M can be mutually incompati-
ble: There is no third sample space
N whose event algebra includes all
the projectors in both L and M. For
example, the S = =%, and S,= =%,
sample spaces for a spin-half particle
are incompatible. Incompatibility for
quantum properties at one time aris-
es only if some projector in L does
not commute with some projector in
M. Because the “operators” in classi-
cal mechanics commute with each
other, there is no analog in classical
physics of incompatible sample
spaces, and there is never any diffi-
culty in combining two probabilistic
descriptions of the same classical
system. As a consequence, physicists
tend to get into the habit of talking
about probabilities without paying
attention to the precise nature of the
sample space. But in quantum theo-
ry such carelessness leads to difficul-
ties and paradoxes. For this reason,
the consistent-histories approach
contains a single-family or single-
logic rule, which states (among other
things) that a description of a quan-
tum system at a single time, and the
probabilistic reasoning that goes into
constructing such a description,
must be based on a single sample
space. Since the corresponding rule
is always satisfied when probability
theory is used in classical physics,
consistent-histories quantum theory
represents a very conservative
extension of ordinary probability
theory into the quantum domain. In
particular, once a sample space has
been specified, all the apparatus of
standard probability theory can be
applied to the quantum case; and
probabilities have their usual intu-
itive interpretation, in terms of igno-
rance or frequency or whatever one
prefers. It is important to note that
the sample space used in construct-
ing a description is not determined

by some law of nature. Instead, the
choice is made on the basis of the
physical question(s) one wants to
address. A particular question can
only be answered using a sample
space in which it makes sense, and
one can show that the (probabilistic)
answer provided by quantum theory
does not depend upon which sample
space satisfying this criterion one
uses. For further details on these
matters, we refer the reader to our
publications.?

Let us turn to the example con-
sidered in Faris’s letter. It is the
usual Einstein-Podolsky-Rosen situ-
ation as formulated by Bohm, with a
pair of spin-half particles prepared
initially in a singlet state. At some
later time, A, B, and C are proper-
ties of the first particle in which the
w component of spin angular
momentum is positive, S, = +1/,, for
three choices of the direction w lying
in a plane and separated from each
other by 120°. Similarly, A’, B, and
C’ are properties of the second parti-
cle in which the component of spin
angular momentum is negative, S, =
-1/, for the same three directions. If
one thinks of these properties as pro-
jectors, A commutes with A’, B, and
C’, and the same is true of B and C,
since operators referring to one par-
ticle commute with operators refer-
ring to the other particle. On the
other hand, A, B, and C do not com-
mute with one another, and the
same is true of A, B’, and C".

Faris constructs an argument
whose conclusion is that there is
never a simultaneous occurrence of
two of the three events X = (A and
not B), Y=(B and not C’) and Z =
(C and not A”). But this conclusion
makes no sense within consistent-
histories quantum theory, because X,
Y, and Z, regarded as projectors, do
not commute with each other. Since
they do not commute, there is no
sample space that contains more
than one of them, and talking about
two of them occurring or not occur-
ring simultaneously is meaningless.
The place where Faris’s argument
goes astray, from a consistent-histo-
ries perspective, is at the very first
point where he combines results
involving noncommuting projectors.
He starts by assuming (B and not
C’) and from this infers B. This is
acceptable, since there is a sample
space for the two spin system that
contains (B and not C’) as one of its
elements, with B an element of the
corresponding event algebra. Howev-
er, the next step, the inference from



B to B, is problematic, because B’
does not belong to the event algebra
of the sample space used previously,
as is obvious from the fact that it
does not commute with C’. Conse-
quently, either the step from B to B’
is not allowed, or else one has to
adopt a new sample space in which
both B and B’ make sense. But in
the latter case it is necessary to
abandon the earlier (B and not C’),
as it cannot be a part of the new
sample space. In either case, the
argument cannot be completed.
Chaining together arguments using
mutually incompatible sample
spaces is a common mistake in quan-
tum reasoning, leading to a variety
of quantum paradoxes. Readers may
find it useful to consult reference 3
for detailed discussion of a similar
example.

A possible way out of this conclu-
sion might be the distinction that
Faris makes in his letter, which is
not very clear to us, between a quan-
tum event and a physical event. He
refers to X, Y, and Z as physical
events, and it may be that Faris
believes that one can sensibly speak
of them occurring simultaneously
despite the fact that the correspon-
ding quantum projectors do not com-
mute. One must certainly distin-
guish between physical events occur-
ring in a laboratory and the mathe-
matical objects, such as projectors,
that represent them in the theorist’s
notebook. Still, insofar as quantum
theory is a correct description of the
world, it is unlikely that there are
real events in the laboratory whose
counterparts in the theory lack any
meaning. To be sure, Faris has the
right to develop his own theory using
definitions and rules that are differ-
ent from those we have developed for
the consistent-histories approach.
But then the contradiction that he
has derived has to do with his own
alternative proposal, and not with
consistent-histories quantum theory
as that has been defined up till now.

We do not think that the rules of
consistent-histories quantum theory
are at all obscure. Instead, confusion
arises from importing classical ideas
into quantum theory in a manner
that is incompatible with the mathe-
matics of Hilbert space. The consis-
tent-histories rules, when they are
taken seriously, prevent this sort of
thing, and keep one from falling into
the sort of contradiction that Faris is
concerned about.
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Echegaray—Fiscal
Scientist and More

his letter is in response to Lloyd

Kannenberg’s delightful article
“Fiscal Physicists” (PHYSICS TODAY,
December 1998, page 38; Letters,
April 1999, page 15). I would like to
add to Kannenberg’s collection the
name of the Spanish scientist José
Echegaray Izaguirre (1832-1916), to
whom the Bank of Spain dedicated
the 1000-peseta banknote (approxi-
mately $6) issued in 1971. The bank-
note, whose dimensions were 93 mm

153 mm, was in circulation until

the beginning of the
1980s.

Although Echegaray
may not have made any funda- |
mental contribution to the
advancement of physics world-
wide, he played an essential
role in the development of
physics in Spain. Professor of
mathematical physics at the Uni-
versity of Madrid, and now recog-
nized as one of the best national
mathematicians of the late 19th
century, he introduced in Spain
many of the ideas about physics and
mathematics that were circulating in
Europe. He also founded the Royal

Spanish Society of Physics in 1903,
and was its first president.

But his activities were not limited
to this. Educated as a civil engineer,
he was also an eminent economist
and a supporter of free trade. His
talent and knowledge enabled him to
serve several terms as minister of
finance; he was also elected to the
House of Commons several times
and later to the Senate. Echegaray
improved the country’s economy, and
founded the Bank of Spain, which
was—and is today—the national
institution that oversees the econo-
my and the national currency. The
reverse of the banknote shows an
illustration of the central building of
the Bank of Spain, built while
Echegaray was minister of finance.

Echegaray also was a writer; his
works were an excellent expression
of romanticism. In 1904 he was
corecipient, with Frederic Mistral,
of the Nobel Prize in Literature.

This extraordinary confluence of
abilities would have been enough to
gain him recognition, but his renown
came at one of the most difficult
times in Spain’s history. In 1898
Spain had lost the war against the
US and, as a consequence, had also
lost the last of its former empire
(Cuba, the Philippines, and smaller
territories in the Pacific Ocean).
These losses generated a feeling of
frustration among the Spanish peo-
_ ple, and the sense of being
| weaker than their neighboring
European colonial powers. In
this atmosphere, Echegaray
became a focal point for
Spanish nationalism.

I do not know of many
cases like José Echegaray
Izaguirre: outstanding

mathematician, engineer,
| physicist, economist, politi-
i | cian, and
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writer. It would
be nice if PHYSICS TODAY col-
lected similar cases of physicists
with expertise in such diverse intel-
lectual pursuits.
In summary, Echegaray was a





