BOOKS

Weinberg on Supersymmetry; Another Landmark Work

The Quantum Theory of Fields, Vol. 3: Supersymmetry

Steven Weinberg Cambridge U. P., New York, 2000. 419 pp. \$49.95 hc ISBN 0-521-66000-9

Reviewed by Frank Wilczek

One might not be predisposed to describe the third volume of Steven Weinberg's treatise on quantum field theory as "long-awaited," since the first two volumes (*Quantum Theory of Fields 1, 2, Cambridge U.P., New York, 1995, 1996*) appeared fewer than five years ago. Upon beginning to read the final volume in Weinberg's trilogy, however, I soon realized that he has produced a treatise that many of us had indeed long awaited, perhaps without fully realizing it.

Twenty-eight years ago Weinberg produced a landmark text on relativity theory, his Gravitation and Cosmology, (Wiley, 1972). That subjectmatter had, of course, been the focus of several previous texts, but Weinberg's treatment was unique in important ways. It was self-contained in its logic, complete in its derivations, scholarly, and—last but by no means least-judicious in its choices. In a field that easily lends itself to ungoverned speculation and purely formal elaboration, Weinberg kept steadily oriented toward observed or potentially observable phenomena. His focus on relativistic stars and, especially, physical cosmology was prescient; these subjects flourished in ensuing years, in large part through the efforts of a generation influenced by Gravitation and Cosmology.

Now, I believe, with the publication of *The Quantum Theory of Fields, Vol.* 3, he has performed an analogous service for supersymmetry.

Supersymmetry, in the sense used by Weinberg and followed here, is a particular extension of Lorentz invariance. It allows transformations

FRANK WILCZEK is the J. Robert Oppenheimer Professor in the School of Natural Sciences at the Institute for Advanced Study in Princeton, New Jersey.

between particles with different spins. In particular, supersymmetry transforms fermions into bosons and vice versa. Very elementary observations are sufficient to inform us that supersymmetry is not an exact symmetry of Nature. For example, if there were bosonic particles having the same mass and charge as electrons, they would have been detected long ago. But a great lesson of twentiethcentury physics is that fundamental symmetries of physical laws can be hidden or broken in a variety of ways and vet remain extremely useful. For example, within quantum chromodynamics one has confinement of color symmetry, and within electroweak theory (or within a superconductor) one has spontaneous breaking of gauge symmetry.

Are there any indications that a similar development will occur for supersymmetry? There are indeed, as Weinberg emphasizes. Supersymmetry, so long as it is "softly" broken, arranges that quantum corrections due to highly virtual bosons and fermions cancel, and it suppresses certain kinds of radiative corrections that are otherwise generic. Among these are radiative corrections to the scale of electroweak symmetry breaking, which one would otherwise expect to be guite large. This mechanism for suppressing unwanted radiative corrections works quantitatively only if the supersymmetric partners of known particles are not too heavy; specifically, they do not exceed the reach of the Large Hadron Collider (LHC) planned for CERN. Moreover, there is already impressive, although indirect, quantitative evidence for the existence of such particles, from their role in ensuring the unification of couplings.

Weinberg builds up the necessary formal apparatus clearly and systematically, carefully motivating and stating the assumptions at each stage and delimiting the scope of each one. Recently there has been a tendency in certain quarters to label this restrained, selective approach "phenomenology." I prefer the traditional, appropriate usage: theoretical physics. Weinberg is a master theoretical physicist, and this book is a model work of theoretical physics.

The first part of the book, occupying almost two-thirds of its length, culminates in the construction of supersymmetric versions of the Standard Model and its extensions to include unification of gauge interactions. This part begins with a discussion of the uniqueness of supersymmetry as an extension of Lorentz invariance and works through the representations of supersymmetry algebras, their embodiment in quantum fields, and the construction of invariant interactions.

How and why is supersymmetry broken? Several options are discussed, but none is entirely convincing. In the absence of a canonical model for why and how supersymmetry breaking occurs, the predicted consequences of supersymmetry are not sharply defined. In particular, we cannot reliably estimate supersymmetric contributions to rare flavorchanging processes, including nucleon decay. On the face of it, they appear dangerously large. Nor can we fully pin down the tantalizing possibility that the lightest superpartner provides the astronomers' "dark matter." Supersymmetry breaking remains a great open problem.

The remainder of the book is divided roughly equally between nonperturbative aspects of supersymmetric quantum field theories and the extension of supersymmetry to include gravity (supergravity). Nonperturbative supersymmetry is of interest both because it provides insight to the way supersymmetry might be spontaneously broken and because it provides some surprisingly tractable models of general quantum field theoretic phenomena. Supergravity is of interest not only because (after all) gravity exists, but also because the gravitational interactions play a central role in some proposals for supersymmetry breaking. Quantum gravity might thus finally, albeit indirectly, enter the ambit of accessible laboratory phenomena. In many ways supergravity assumes its most beautiful form only when formulated in large numbers of dimensions (10 or 11), and Weinberg concludes with an incisive discussion of this aspect, with a pointer toward string/M theory.

Although this volume is the third in a trilogy, it is quite different from its two predecessors, and it stands on its own. It seems much closer than the others to being a true textbook and could work well with any of several excellent quantum field theory texts as its front end. May a new generation of students imbibe its content and spirit, and may it become the user's manual for the Large Hadron Collider!

Cosmological Physics

John A. Peacock Cambridge U. P., New York, 1999. 682 pp. \$85.00 hc (\$39.95 pb) ISBN 0-521-41072-X hc (0-521-42270-1 pb)

Even under the best of circumstances, writing a text on modern cosmology is not easy. In the first place, the field is developing at a lightning pace; new observations have daily been revolutionizing our picture of the large-scale structure of the universe. Next, there is the question of what to include and what not to. A proper appreciation of this field requires input from particle physics, astrophysics, and general relativity, at the very least. One must therefore choose whether to assume some knowledge of each of these fields, or whether to provide a pretense of an introduction to each of them. Otherwise, one must provide three textbooks in one, and this has, to date, been largely beyond anyone's ambitions.

John Peacock however, has taken up this latter challenge, and he has very largely succeeded. His Cosmological Physics is a remarkable book, both for its scope and for its depth of understanding. I was frankly amazed to see subjects as diverse as observational constraints on the two-point galaxy-galaxy correlation function and a discussion of the beta function in non-abelian gauge theories, all treated with authority and precision. For this reason alone, this book is sure to find a place in the libraries of both graduate students and long-standing researchers in cosmology.

It is probably best to review this book by discussing the problems it doesn't have, many of which can be found in other texts.

First, it is not merely bibliographic. Some books, in an attempt to cover all the necessary material, read more like a good table of contents for a text. On the other hand, it is not intimidating, so one need not scan myriad pages to learn about a single topic. Peacock tends to get to the heart of the matter and develops just enough

mathematical background to help one get a handle on new developments.

Next, it is clear, at least from my random checks, that Peacock does not discuss topics that he doesn't really understand. Nor does he merely regurgitate the equations of classic papers on various subjects. While his background is as an astrophysicist and not a particle physicist, one nevertheless gets the sense that each topic he chose to cover is one that he has studied in enough detail to get it right.

Finally, the book is not generally out of date. Because the field is changing so quickly, many well-known texts, such as Edward Kolb and Michael Turner's *The Early Universe* (Addison-Wesley, 1993), are good places to find an introduction to the field—but not the most current findings or the latest results.

This is not to say that the book is completely up to date. Several areas in which I found Peacock's treatment was somewhat behind, for example, include age determinations of globular clusters and big-bang nucleosynthesis constraints on light-element abundances, two areas in which, admittedly, I have worked and so am more familiar with the literature.

Gaps aside, Peacock's presentation is logical and coherent. He begins the book with a short but comprehensive primer on general relativity, both in the abstract and as it is applied in astrophysics. Peacock then proceeds to classic tests of cosmology, from the determination of the isotropy of the universe to gravitational lensing to the classic age and distance tests. Changing directions, he then reviews the basics of quantum field theory in a 100-page introduction that is quite comprehensive—perhaps too comprehensive for some.

Having established the necessary tools, Peacock then proceeds to explore the physics of the early universe, from the standard physics of the hot big bang model to the more exotic physics associated with both topological defects and the zoo of inflationary model building. Once again, even in these exotic areas one feels the book has been shaped by a firm hand in command of the basic principles as well as many of the details.

The latter part of the book is devoted to the empirical meat of cosmology, including observations of galaxy dynamics, the inference of dark matter, active galactic nuclei, and galaxy formation and evolution. The book ends, correctly I believe, with a discussion of cosmic microwave background fluctuations. This area will,

over the next decade, carry cosmology fully into the twenty-first century and promises to constrain empirically many of the fundamental parameters of our expanding universe that have to date remained beyond the reach of observers (if not theorists).

One of the successes of this book also presents a problem for the reader or teacher. It is clear that no single graduate course can cover with any fairness all of the topics discussed. Some topics probably require a separate textbook. I have spoken to one or two colleagues who have tried to teach out of this book, and they all indicate that there is simply too much material.

Nevertheless, this book is sufficiently comprehensive so that readers wishing to brush up on a modern topic in cosmology are likely to find their basic questions addressed, a reasonable perspective on modern developments, and sufficient background so that they can move on to more detailed references. This is not faint praise. The fact that Peacock has succeeded in this regard means that this will remain a valuable reference source for some time to come, and one which both active researchers and students will want to keep handy.

LAWRENCE M. KRAUSS
Case Western Reserve University
Cleveland, Ohio

Quantum Generations: A History of Physics in the Twentieth Century

Helge Kragh Princeton U.P., Princeton, N.J., 1999. 480 pp. \$29.95 hc ISBN 0-691-01206-7

Helge Kragh is an excellent historian of modern physics who has several books and many fine articles to his credit. Thus, he was a logical person for Princeton University Press to ask to write a book summarizing the development of physics during the past century. However, he confesses in his preface to Quantum Generations, "I should have known that it is simply not possible to write a balanced and reasonably comprehensive one-volume account of twentieth century physics." He thus offers as a substitute "a fairly brief and much condensed and selective account."

Quantum Generations contains three sections, of about equal length, dealing respectively with the wellchosen periods 1890–1918, 1918–1945, and 1945–1995, followed by ten-page

56