
MODERN CLASSICAL PHYSICS 
THROUGH THE WORK OF 

G. I. TAYLOR 
D uring the spring of 1998 

we co-taught a graduate 
course on modern classical 
physics that aimed to cover 
the fundamentals while also 
conveying the directions and 
sense of current research. As 
we talked about the subject, 
we realized that many of the 
important discoveries under­
lying a wide range of topics 
of current interest in physics 

One scientist's work provides material 
for an entire course, covering topics 

ranging from hydrodynamic stability 
and turbulence to electrohydrodynamics 
and the locomotion of small organisms. 

Taylor did much of this 
research involving electric 
fields between his 70th and 
80th years. 

The remarkable depth 
and breadth of Taylor's 
research impacts in one way 
or another much of modern 
research in classical physics. 
Therefore, we decided that 
our ends would be well 

Michael P. Brenner and Howard A. Stone 

and engineering were made 
by a single individual, the British scientist Geoffrey 
Ingram (G. 1.) Taylor (1886-1975). Although many 
researchers are familiar with one or another of Taylor's 
contributions, few seem to be aware of the incredible 
breadth of his scientific publications and their relevance 
to important research questions today. The same person 
who is commonly remembered as the namesake for sever­
al basic fluid flow instabilities (Taylor-Couette , 
Rayleigh-Taylor, and Saffman-Taylor) also was the first 
to show experimentally that a diffraction pattern pro­
duced by shining light on a needle does not change when 
the intensity of light is decreased. And these topics are 
only the beginning. Taylor made fundamental contribu­
tions to turbulence, championing the need for developing 
a statistical theory, and performing the first measure­
ments of the effective diffusivity and viscosity of the 
atmosphere. He wrote one of the first scientific papers 
using random walks; gave the first consistent theory of 
the structure of shocks in gases; and explained the impor­
tance of dislocations for determining the strength of 
solids. He also described the counterintuitive physics of 
fluid motion in a rotating environment, providing the 
basic principles for important aspects of atmospheric and 
oceanic dynamics. 

Taylor studied all of these topics during the first 30 
years of his career, between his 20th and 50th years. Dur­
ing the next 30 years, among other achievements, he 
quantitatively described dispersion of solute in fluid flow; 
elaborated the basic principles for how microorganisms 
can swim; and predicted, by dimensional analysis, the 
energy of the atomic bomb explosion from a series of US 
government publicity photographs. He also recognized 
that accelerating an interface between two fluids can lead 
to instability, and did seminal work on the interaction 
between fluids and electric fields, providing the founda­
tion for electrohydrodynamics and the basic principles for 
a slew of present-day industrial processes and devices. 
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served by structuring the 
course exclusively around 

Taylor's scientific papers. In this article we summarize 
the structure and content of our course, and in the process 
describe a few of Taylor 's discoveries that are perhaps not 
widely known outside of the disciplines that they impact 
most substantially. 

Course structure 
Throughout the semester, it became increasingly clear 
that there were many advantages to structuring a course 
around Taylor's published papers. 1 First of all, Taylor's 
research interests provide an excuse to cover a much 
wider range of topics than is normally justifiable in a sin­
gle course. Second, a careful study of his papers inevitably 
draws attention to his style, which is to compare theoret­
ical arguments and scaling analyses directly and quanti­
tatively with experimental results. The value of investi­
gating science and engineering questions in this way, 
while on the one hand rather obvious, is on the other hand 
extremely difficult both to teach and to learn, especially 
when considering complicated nonequilibrium problems 
as Taylor routinely did. 

As anyone who has tried to make a prediction about 
such a system knows too well, the greatest difficulty is 
posing questions that at the same time have simple quan­
titative answers and prove insightful. Taylor's great tal­
ent was to repeatedly find ways of extracting a simple fea­
ture from a complicated process or experiment. Not only 
did this lead to direct, quantitatively testable predictions, 
but later researchers tended to identify Taylor's extrac­
tions as the most important quantitative aspects for 
understanding the system. In "teaching Taylor," there are 
endless opportunities to draw attention to the value of 
this approach to scientific and engineering questions and 
to compare and contrast it with more modern, brute-force 
approaches such as direct computation of every aspect of 
a system. Although there is clearly much to be said for 
both approaches, it is vastly easier to teach the latter, as 
the examples of the former are few and far between. 

The outline for our course is shown in the box on page 
32. Typically there were two 90-minute lectures per week, 
in which we critically discussed a single paper, or some­
times a group of two or three papers. The papers were dis­
tributed in advance and students were expected to have 
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read them. In several instances, we distributed recent 
review articles or closely related research papers as well. 
We also organized a number of special seminars given by 
local faculty and visitors; we asked these lecturers to 
frame their remarks as: "subject X since Taylor." 

Introductory ideas 
To set the stage for Taylor's research, we used the first lec­
ture to summarize the state of fluid mechanics in the 
early years of the 20th century, before Taylor became 
involved. We based this presentation on the excellent 
review by Sydney Goldstein, published as the first article 
in the first issue of Annual Reviews of Fluid Mechanics. 2 

Although much was known about fluid motion in the early 
years of the 20th century, much discord and debate existed 
over the relation of the theories to experiments. In 1916, 
Lord Rayleigh wrote a review for Nature of the fourth edi­
tion of Horace Lamb's Hydrodynamics, in which he said 
"Perhaps the time for [comparing theoretical hydrodynam­
ics with experiments] has not yet come .... We may hope 
that before long [experiments may be] brought into closer 
relation with theoretical hydrodynamics." 

A major problem at the time was that there was still 
uncertainty about the correct boundary conditions on the 
fluid velocity at solid surfaces, and whether these bound­
ary conditions could be independent of the state of motion 
of the fluid . Although Ludwig Prandtl's 1904 work intro­
ducing viscous boundary layers pointed toward the reso­
lution, his ideas were only gradually being disseminated 
and understood. Goldstein writes that by the mid-20th 
century these problems were largely resolved. "Several 
factors ... contributed to this, but the greatest influence 
has been the example of G. I. Taylor." 

We then turned to a discussion of Taylor's papers. 
Our choice of ordering, summarized in the box, was an 
attempt to be pedagogical. We started with Taylor's first 
two scientific papers, written when he was less than 25 
years old, and proceeded to read his work on instabilities, 
turbulence, rotating flows , and so on. 

A WATER BELL forms when a 
water jet hits the top of a 
closed cylinder. The impact of 
the jet creates a thin fluid 
sheet, which then wraps 
around the cylinder to form a 
beautiful "bell. " This flow con­
figuration was first analyzed 
by Felix Savart in 1833. Taylor 
provided a theoretical descrip­
tion of the shape of the bell. 
This photograph was taken by 
Robert Buckingham in the 
fluid dynamics laboratory at 
MIT's mathematics depart­
ment, under the supervision of 
John Bush. 

The rest of this article 
gives brief summaries of 
some of the topics . Taylor 
contributed so much to fluid 
and solid mechanics that it is 
both impossible and beyond 
our competence to do justice 
even to his qualitative ideas 
in a single course, much less 

in a single article, and so in both cases there are egregious 
omissions. Our choice of topics for this article was moti­
vated by our desire to show the breadth and continued rel­
evance of Taylor's research, as well as to highlight those 
topics that we found to be the most useful pedagogically. 
For more detailed information about Taylor's work and 
life, we recommend George Batchelor's recent biography 
of Taylor,3 and recent review articles.4

•
5 

Interference fringes by feeble light 
We began our tour of Taylor's research by discussing his 
first scientific paper, which was published in 1909. This 
was his only paper that was not classical physics, but it 
nonetheless bore the experimental characteristics that 
were to appear throughout his later work. At the request 
of J. J. Thomson, Taylor performed an experiment (in the 
children's room of his parent's house! ) to determine 
whether there was a qualitative change in a diffraction 
pattern when the intensity of the light is reduced greatly.3 

Taylor indicates that Thomson believed that there would 
be a change in the pattern. Taylor took photographs of the 
shadow of a needle, varying the intensity of light by 
shielding the light source with smoked glass screens. 
When decreasing the intensity he increased the exposure 
time to keep the total amount of light on the photograph 
constant. The longest experiment took three months, cor­
responding to the intensity of a candle more than a mile 
away; some of the experiments even took place while Tay­
lor was on a yachting trip. Taylor observed no change in 
the diffraction pattern, wrote a two-page paper describing 
this result, and then dropped this line of research. 

Motion of discontinuities in gases 
Taylor 's second scientific paper, published in 1910 when 
he was 25 years old, was awarded the Smith Prize for sen­
ior mathematics students at Cambridge University. This 
paper solved a long-standing, fundamental problem in 
fluid mechanics. George Gabriel Stokes had noticed that 
there was the real possibility that the velocity in a gas 
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could form discontinuities in a finite time, if a slower 
region of gas were moving ahead of a faster region. Such 
discontinuities, now called "shocks," are easily predicted 
from the equations of ideal (inviscid) fluid dynamics. They 
represent singularities, in that velocity gradients diverge 
at the discontinuity. At the time, it was not known what 
happened after such shocks formed. Taylor demonstrated 
that in a real gas the discontinuity would be eliminated by 
dissipative effects (both viscosity and thermal heating). 
This solution (realized qualitatively in 1908 by Rayleigh, 
then 66 years old) is one of the most basic features in gas 
dynamics. 

The Taylor-Couette paper 
The first topic we treated in detail was Taylor's 1923 
paper on instabilities of Couette flow-the flow between 
concentric rotating cylinders. An interesting feature is the 
paper's motivation. Taylor begins by observing that "A 
great many attempts have been made to discover some 
mathematical representation of fluid instability, but so far 
they have been unsuccessful in every case."6 The concept 
of stability had been well formulated by this time, and 
many authors (among them Lord Kelvin, Rayleigh, Heinz 
Hopf, and Arnold Sommerfeld) had attempted to predict 
the instability of a solution to the equations of fluid 
dynamics. Unfortunately, however, no calculation agreed 
with experiments. The failure to predict instabilities led 
to great consternation and confusion. For example, Hopf 
suggested that perhaps it was necessary to take account 
of the rigidity of the boundaries to explain the instability 
of shear flows in channels. (Taylor commented: "There 
seems little to recommend this theory as an explanation of 
the observed turbulent motion offluids ."6) 

Taylor's paper is a major intellectual accomplish­
ment, representing the first example where a stability cal­
culation quantitatively matches an experiment. The fact 
that the comparison worked is due in large part to Tay­
lor 's insight that among the different possible experi­
ments, the rotating cylinder apparatus is best suited for 
quantitative comparison between theory and experiment. 
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GEOFFREY INGRAM TAYLOR (right) at age 69, in his laborato­
ry with his assistant Walter Thompson. (AlP Emilio Segre 
Visual Archives.) 

The work demonstrated unambiguously that both the 
approach used in the stability calculation, and its under­
lying assumptions (the boundary conditions), were cor­
rect. As Goldstein states in his review article, "Simplifica­
tions of the mathematics ... were to follow, but there 
could be no [more] controversy."2 

Taylor's paper was equally remarkable for its techni­
cal detail, both theoretical and experimental. The calcula­
tions leading to an instability threshold for inner and 
outer cylinders of arbitrary radii are tedious, producing 
formulas that are each about a page long, involving deter­
minants of Bessel functions. (In lecture, we avoided the 
algebra by using the thin-gap limit, first introduced by 
Harold Jeffreys in 1928, and expanded on at length by 
Subrahmanyan Chandrasekhar.7) At the time, determin­
ing the numerical values of the formulas was itself a sig­
nificant challenge. Designing an experiment consistent 
with the assumptions of the calculation was equally deli­
cate-in particular, end effects of the cylinder could not 
influence the onset of the instability. The results for the 
instability boundary as a function of the rotation rates of 
the two cylinders were in beautiful agreement with the the­
ory, as the figure on page 35 shows, and several of Taylor's 
photographs of the flow are still reproduced. Rather amus­
ingly, Taylor actually measured more points on the stabili­
ty boundary experimentally than he calculated theoretical­
ly, presumably due to the tediousness in evaluating the 
Bessel function determinants! 

At the end of the paper, Taylor described his observa­
tions of the panoply of nonlinear states that exists in the 
rotating cylinder apparatus above the instability threshold. 
As the relative speed of the cylinders is increased, the flow 
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INSTABILITY during the peeling of adhesive tape. 
G. I. Taylor studied this problem in 1964 (at the 

age of 78), and demonstrated that viscous stresses 
in the adhesive fluid contribute significantly to its 

"stickiness." When the adhesive is peeled from a 
solid surface (the blue region), competition 

between applied pressure and surface tension leads 
to an instability with a well-defined wavelength 

(squiggles) . Interest in the relevance of fluid 
mechanical instabilities to adhesion continues to 

this day. (For a review, see the article by Cyprien 
Gay and Ludwik Leibler, PHYSICS TODAY, 

November 1999, page 48.) (Image © Felice 
Frankel, Massachusetts Institute of Technology; 

from F. Frankel, G. M. Whitesides, On the Surface 
ofThings, Chronicle Books, San Francisco, 1997.) 

goes from steady, to a time varying ''barber-pole" pattern of 
vortices, to a turbulent irregular flow. As summarized by 
Richard Feynman in his lectures: 

The main lesson to be learned from [Taylor's 
work] is that a tremendous variety of behavior 
is hidden in the [Navier-Stokes equations]. 
All the solutions are for the same equations, 
only with different values of the [rotation 
speed]. We have no reason to think that there 
are any terms missing from these equations. 
The only difficulty is that we do not have the 
mathematical power today to analyze 
them .... That we have written an equation 
does not remove from the flow of fluids its 
charm or mystery or its surprise .8 

Diffusion by continuous movement 
Taylor's work on turbulence centered on relentless 
attempts to describe turbulence by formulating mathe­
matical theories that could be directly and quantitatively 
compared with experimental data. During the semester, 
we discussed five of Taylor's papers on turbulence, start­
ing with his monumental (and largely unreadable) 1915 
paper, "Eddy motion in the atmosphere," and ending with 
his 1939 paper introducing what is now known as the Tay­
lor-Greene vortex. In the latter paper, Taylor constructs a 
solution to the Navier-Stokes equations that demon­
strates the turbulent energy cascade. 

In general terms, Taylor 's contribution to our under­
standing of turbulence was his observation that "by anal­
ogy to the kinetic theory of gases" one should find a sta­
tistical description. He therefore aimed to find ways of 
predicting statistical properties of the flow. His most pen­
etrating contribution was probably the formula (given in 
a 1923 paper) 

d~2) =(v2) J C(t-g)dg, 

where ( ·) denotes a time average, x denotes position, and 
C(t - g) = (v(t)u( t - g))/(v(t)2) is the velocity correlation 
function. 

At one level this formula is a trivial mathematical 
identity and is independent of the details of how an actu­
al fluid moves. However, the formula represents two dif­
ferent types of experimental measurements: The left­
hand side gives the dispersion of tracers in the flow and 
can be measured by observing the diffusivity of dye in a 
turbulent flow; the right-hand side can be measured by 
sampling the velocity field at different times, and meas-

uring the correlations. Taylor demonstrated that the cor­
relation function is sufficient to specify the statistical 
properties of a stationary random function, an idea that 
has had great influence beyond the realm of fluid mechan­
ics. For example, Norbert Wiener writes, describing his 
beginning research on random functions : 

I was an avid reader of the journals, and in 
particular of the Proceedings of the London 
Mathematical Society. There I saw a paper by 
G. I. Taylor, later to become Sir Geoffrey Tay­
lor, concerning the theory of turbulence ... . 
The paper was allied in my own interests, in 
as much as the paths of air particles in turbu­
lence are curves and the physical results of 
Taylor's papers involve averaging or integra­
tion over families of curves.9 

Wiener goes on to say that Taylor "represents a peculiar­
ly English type in science: the amateur with a profession­
al competence." The above formula has had tremendous 
impact on developing the theory of turbulence: To this day, 
it is believed that the fundamental quantities to be predict­
ed from the governing equations are correlation functions. 

Taylor dispersion 
One of Taylor's most useful results concerns the disper­
sion of a solute in a flowing fluid stream. The motivation 
for this project was to understand the manner in which 
drugs are dispersed in blood flow; other applications 
abound. The idea is to consider the steady laminar flow in 
a straight circular pipe of radius a , and understand how 
an initially localized solute disperses with time. 

If there were no molecular diffusion, the solute would 
be spread out considerably by the flow, because of the 
large velocity gradient across the pipe. Taylor recognized 
that molecular diffusion actually impedes this dispersion: 
Molecular diffusion forces the solute in the center of the 
pipe to diffuse near the walls, where it moves more slow­
ly. Taylor demonstrated that if the concentration is denot­
ed c(r ,z,t), where z lies along the pipe axis, and the area­
averaged cross-sectional concentration is (c)(z ,t), then the 
average concentration evolves according to the convective­
diffusion equation 

--+ u--- -- were - +- , a(c) ( )a(c) -1Ja
2
(c) h 1)- n(1 1 (u)

2
a

2
) 

at az az2 
' 48 D 2 

and D is the molecular diffusion constant. 10 The solute 
center of mass moves with the mean velocity (u) and has 
a Gaussian spread about the mean that increases in pro-
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portion to \1'15t. The largest contribution to the dispersion 
typically comes from the %s((u)2a2/D) term, which is 
inversely proportional to the diffusion coefficient! Taylor 
even used this idea to measure the molecular diffusion 
constant, an approach that is used to this day.11 

Viscous hydrodynamics 
The subject of viscous hydrodynamics was popularized in 
the physics community by Edward Purcell's article, "Life 
at low Reynolds numbers," in which he describes his work 
with Howard Berg on understanding bacterial propul­
sion.12 What is perhaps not so well known is that the first 
widely recognized work on this topic was Taylor's .13 Pur­
cell wrote 

But at that time G. I. Taylor's paper in the 
Proceedings of the Royal Society could con­
clude with just three references: H. Lamb, 
Hydrodynamics; G. I. Taylor (his previous 
paper); G. N. Watson, Bessel Functions. That 
is called getting in on the ground floor. 

Taylor's interest in this subject was apparently stim­
ulated by his interaction with the zoologist James Gray of 
Cambridge University. The basic difficulty of low­
Reynolds-number propulsion is that motion is reversible: By 
reversing kinematical motions one always ends up at the 
same starting place. Purcell popularized this idea through 
his "scallop theorem," which states that a scallop (an object 
with only one joint) in a viscous fluid cannot swim. 

Taylor investigated simple swimming situations 
where reversibility is broken, to demonstrate how motion 
is possible. For example, through explicit calculation he 
demonstrated that transverse waves propagating along a 
sheet submerged in a fluid cause the sheet to translate 
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TAYLOR COLUMNS. When an object moves in a rotating flow, 
it drags along with it a column of fluid parallel to the rotation 
axis. This photograph shows the flow when a dyed drop of sili­
cone fluid (radius 2 em) rises through a large tank of water 
rotating at 56 rpm (From ref. 17.) 

with uniform velocity. These ideas have found many 
recent applications, from the design of micromechanical 
machines to hypotheses about propulsion mechanisms in 
unusual organisms. Also, Taylor developed the still-avail­
able educational film "Low Reynolds Number Flows," 
which is familiar to many and recommended to all as a 
wonderful example of Taylor's creativity and clarity. 

Swimming snakes 
Gray also provoked Taylor's interest in the swimming of 
snakes. How do various types of deformations of the snake 
produce forward thrust? At first sight, this problem seems 
intractable, because the flow generated by a snake is typ­
ically turbulent, and so theories do not really exist. Taylor 
observed, however, that there is much experimental data 
regarding the forces on cylinders in a turbulent flow, and 
proceeded to use this data as the basis for his theory. By 
modeling the snake as a sum of cylinders, he computed 
the swimming velocity as a function of the deformation. 
This allowed him to explain quantitatively features of 
how snakes swim-for example, the wave amplitude of 
the snake that makes it move the fastest. Perhaps his 
most interesting discovery is that a snake with a rough 
surface can swim forward by sending waves in the for­
ward direction. Taylor writes, "On showing [the result] to 
Professor Gray, [he] called my attention to a set of photo­
graphs he had taken of a marine worm Nereis diversicol­
or which does in fact swim in this way."14 And, as predict­
ed, the worm has a rough surface. 

Taylor columns 
In a steady, rapidly rotating flow with angular velocity !l, 
the dominant forces are pressure gradients and Coriolis 
forces, and the Navier-Stokes equations reduce to 

2p!l X v = - '\lp, 
where p is the fluid density and p is the pressure. Taking 
the curl of this equation, it follows that the velocity is 
independent of the coordinate along the rotation axis. The 
flow is therefore effectively two-dimensional. This result, 
first demonstrated by Joseph Proudman in 1915, is now 
called the Taylor-Proudman theorem. 

Taylor's name got attached because he addressed the 
question of what happens if one tries to disturb the two­
dimensionality of the flow. In a paper published in 1923, 
he reported placing a short cylinder in a rotating tank of 
fluid and dragging the cylinder relative to the flow. With­
out rotation, of course, the motion of the short cylinder 
would disturb the flow in all directions. How can this be 
reconciled with Proudman's result? The experiments 
demonstrated what Taylor called a "remarkable" conclu­
sion: The flow remains two-dimensional! The solid object 
(nearly) immobilizes an entire column of fluid parallel to 
the rotation axis. Thus, in a rotating environment, a slow­
ly moving object behaves nearly as a solid cylinder extend­
ed parallel to the rotation axis. There are numerous appli­
cations of this idea to motions in atmospheres and oceans, 
because surface topographic features produce "columnar" 
disturbances that interfere with, or block, the flow at sub­
stantial elevations. 
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Electro hydrodynamics 
Taylor spent much of his later life 
studying the interaction of fluids 
with electric fields. His most impor­
tant contribution-made at age 80-
is the realization that the idealiza­
tion of perfect conductors or perfect 
dielectrics is misleading for electri­
cally dominated flows . There is 
always some residual free charge 
present, typically residing on the 
interfaces between different fluids. 
Thus, any electric field tangential to 
the interface results in a tangential 
stress, and this stress can be bal­
anced only by a viscous flow. 
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Taylor discovered this basic 
notion when trying to explain an 
experimental anomaly in the 
observed shapes of dielectric drops in 
a uniform external electric field. Sim­
ple energetics predicts that such a 
drop should elongate in the direction 

TAYLOR-COUETTE STABILITY DIAGRAM. This plot, from Taylor's 1923 paper on the 
instability of flow between two coaxial rotating cylinders, was the first example of a 
theoretical calculation of a fluid-flow instability that quantitatively agreed with experi­
ments. The stability boundary as a function of the rotation speed of the outer cylinder 
(ordinate) and inner cylinder (abscissa) is shown. The dashed line !l 1R~ = n~; is a 
previous theory by Lord Rayleigh. The solid points represent experimental measure­
ments; the open points, theoretical calculations of the stability boundary. Due to the 
complexity of evaluating numerically the formulas from the theoretical calculations, 
there are more experimental data points than theoretical points. 

of the field, whereas for some fluids the drop actually 
shortened in the field direction. Because the tangential 
electrical stresses described above require a steady vis­
cous flow for balance, the drop shape cannot be obtained 
by energy minimization. The characterization of liquids 
using both a conductivity and a dielectric constant is 
referred to as the "leaky dielectric model."15 

Nuclear explosions 
No article about Taylor would be complete without includ­
ing the often told story about his calculation ofthe energy 
in a nuclear blast. Fables of this story abound. As told by 
Taylor himself/ 6 during the early years of World War II he 
was told by the British government about the develop­
ment of the atomic bomb, and was asked to think about 
the mechanical effect produced by such an explosion. He 
realized that the energy released from the bomb would 
quickly lose memory of its initial shape and distribution, 
and would produce a strong shock in the air. The structure 
of the shock far from the ground would be well-approxi­
mated as spherical. 

With these simplifications Taylor recognized that the 
parameters in the problem are the energy E , the density p 
of air, the pressure p in the air, the radius R(t) of the blast 
wave, and the time t since the blast. Because the blast is 
very strong, the air pressure will not affect the wave very 
much, and sop is not a relevant parameter. Taylor real­
ized that this implies that there is a single dimensionless 
number characterizing the process; the reader can verify 
that Et2/pR5 is dimensionless. 

Because this quantity does not depend on any aspect 
of the problem, it must be a constant. This implies that 
the radius of the blast wave is given by 

R(t) = c(Et2/p)115 , 

where c is a constant. In fact, it turns out that for air c "" 
1.033 according to a calculation. Therefore, given a pic­
ture that shows the radius of the blast , a reference length 
scale, and the time since the blast, one can deduce the 
energy. 

Much after the fact , Taylor analyzed photographs 
taken by J . E . Mack of the first atomic explosion in New 
Mexico. These pictures were taken at precise time inter­
vals from the instant of the explosion, and Taylor con­
firmed that the scaling law agrees very nicely with the 

data. It is interesting to note that, of the papers written in 
the early 1950s reporting independent discoveries of the 
blast scaling law (authors including John von Neumann 
and Leonid Sedov), only Taylor 's paper took publicly avail­
able data to show that the above equation agrees with 
experiments. 

There are many topics that we have not been able to 
cover in this article, or in our course - among them, the 
bulk of Taylor 's contributions to solid mechanics. Another 
effort to design a course around Taylor's papers would 
likely arrive at a completely different list of topics. We 
encourage interested readers to browse Taylor's collected 
works and to design their own course using his papers as 
a gateway to the modern literature. 

Many people provided constructive criticism of an early draft 
of this article. We thank Herbert Huppert for many helpful 
suggestions that improved the final manuscript. 
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