MODERN CLASSICAL PHYSICS
THROUGH THE WORK OF
G. 1. TAYLOR

During the spring of 1998
we co-taught a graduate
course on modern classical
physics that aimed to cover
the fundamentals while also
conveying the directions and
sense of current research. As
we talked about the subject,
we realized that many of the
important discoveries under-
lying a wide range of topics
of current interest in physics
and engineering were made
by a single individual, the British scientist Geoffrey
Ingram (G.I.) Taylor (1886-1975). Although many
researchers are familiar with one or another of Taylor’s
contributions, few seem to be aware of the incredible
breadth of his scientific publications and their relevance
to important research questions today. The same person
who is commonly remembered as the namesake for sever-
al basic fluid flow instabilities (Taylor—Couette,
Rayleigh-Taylor, and Saffman-Taylor) also was the first
to show experimentally that a diffraction pattern pro-
duced by shining light on a needle does not change when
the intensity of light is decreased. And these topics are
only the beginning. Taylor made fundamental contribu-
tions to turbulence, championing the need for developing
a statistical theory, and performing the first measure-
ments of the effective diffusivity and viscosity of the
atmosphere. He wrote one of the first scientific papers
using random walks; gave the first consistent theory of
the structure of shocks in gases; and explained the impor-
tance of dislocations for determining the strength of
solids. He also described the counterintuitive physics of
fluid motion in a rotating environment, providing the
basic principles for important aspects of atmospheric and
oceanic dynamics.

Taylor studied all of these topics during the first 30
years of his career, between his 20th and 50th years. Dur-
ing the next 30 years, among other achievements, he
quantitatively described dispersion of solute in fluid flow;
elaborated the basic principles for how microorganisms
can swim; and predicted, by dimensional analysis, the
energy of the atomic bomb explosion from a series of US
government publicity photographs. He also recognized
that accelerating an interface between two fluids can lead
to instability, and did seminal work on the interaction
between fluids and electric fields, providing the founda-
tion for electrohydrodynamics and the basic principles for
a slew of present-day industrial processes and devices.
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One scientist’s work provides material
for an entire course, covering topics
ranging from hydrodynamic stability
and turbulence to electrohydrodynamics
and the locomotion of small organisms.

Michael P. Brenner and Howard A. Stone

Taylor did much of this
research involving electric
fields between his 70th and
80th years.

The remarkable depth
and breadth of Taylor’s
research impacts in one way
or another much of modern
research in classical physics.
Therefore, we decided that
our ends would be well
served by structuring the
course exclusively around
Taylor’s scientific papers. In this article we summarize
the structure and content of our course, and in the process
describe a few of Taylor’s discoveries that are perhaps not
widely known outside of the disciplines that they impact
most substantially.

Course structure

Throughout the semester, it became increasingly clear
that there were many advantages to structuring a course
around Taylor’s published papers.! First of all, Taylor’s
research interests provide an excuse to cover a much
wider range of topics than is normally justifiable in a sin-
gle course. Second, a careful study of his papers inevitably
draws attention to his style, which is to compare theoret-
ical arguments and scaling analyses directly and quanti-
tatively with experimental results. The value of investi-
gating science and engineering questions in this way,
while on the one hand rather obvious, is on the other hand
extremely difficult both to teach and to learn, especially
when considering complicated nonequilibrium problems
as Taylor routinely did.

As anyone who has tried to make a prediction about
such a system knows too well, the greatest difficulty is
posing questions that at the same time have simple quan-
titative answers and prove insightful. Taylor’s great tal-
ent was to repeatedly find ways of extracting a simple fea-
ture from a complicated process or experiment. Not only
did this lead to direct, quantitatively testable predictions,
but later researchers tended to identify Taylor’s extrac-
tions as the most important quantitative aspects for
understanding the system. In “teaching Taylor,” there are
endless opportunities to draw attention to the value of
this approach to scientific and engineering questions and
to compare and contrast it with more modern, brute-force
approaches such as direct computation of every aspect of
a system. Although there is clearly much to be said for
both approaches, it is vastly easier to teach the latter, as
the examples of the former are few and far between.

The outline for our course is shown in the box on page
32. Typically there were two 90-minute lectures per week,
in which we critically discussed a single paper, or some-
times a group of two or three papers. The papers were dis-
tributed in advance and students were expected to have
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read them. In several instances, we distributed recent
review articles or closely related research papers as well.
We also organized a number of special seminars given by
local faculty and visitors; we asked these lecturers to
frame their remarks as: “subject X since Taylor.”

Introductory ideas

To set the stage for Taylor’s research, we used the first lec-
ture to summarize the state of fluid mechanics in the
early years of the 20th century, before Taylor became
involved. We based this presentation on the excellent
review by Sydney Goldstein, published as the first article
in the first issue of Annual Reviews of Fluid Mechanics.?
Although much was known about fluid motion in the early
years of the 20th century, much discord and debate existed
over the relation of the theories to experiments. In 1916,
Lord Rayleigh wrote a review for Nature of the fourth edi-
tion of Horace Lamb’s Hydrodynamics, in which he said
“Perhaps the time for [comparing theoretical hydrodynam-
ics with experiments] has not yet come . ... We may hope
that before long [experiments may be] brought into closer
relation with theoretical hydrodynamics.”

A major problem at the time was that there was still
uncertainty about the correct boundary conditions on the
fluid velocity at solid surfaces, and whether these bound-
ary conditions could be independent of the state of motion
of the fluid. Although Ludwig Prandtl’s 1904 work intro-
ducing viscous boundary layers pointed toward the reso-
lution, his ideas were only gradually being disseminated
and understood. Goldstein writes that by the mid-20th
century these problems were largely resolved. “Several
factors . . . contributed to this, but the greatest influence
has been the example of G. I. Taylor.”

We then turned to a discussion of Taylor’s papers.
Our choice of ordering, summarized in the box, was an
attempt to be pedagogical. We started with Taylor’s first
two scientific papers, written when he was less than 25
years old, and proceeded to read his work on instabilities,
turbulence, rotating flows, and so on.

A WATER BELL forms when a
water jet hits the top of a
closed cylinder. The impact of
the jet creates a thin fluid
sheet, which then wraps
around the cylinder to form a
beautiful “bell.” This flow con-
figuration was first analyzed
by Felix Savart in 1833. Taylor
provided a theoretical descrip-
tion of the shape of the bell.
This photograph was taken by
Robert Buckingham in the
fluid dynamics laboratory at
MIT’s mathematics depart-
ment, under the supervision of
John Bush.

The rest of this article
gives brief summaries of
some of the topics. Taylor
contributed so much to fluid
and solid mechanics that it is
both impossible and beyond
our competence to do justice
even to his qualitative ideas
in a single course, much less
in a single article, and so in both cases there are egregious
omissions. Our choice of topics for this article was moti-
vated by our desire to show the breadth and continued rel-
evance of Taylor’s research, as well as to highlight those
topics that we found to be the most useful pedagogically.
For more detailed information about Taylor’s work and
life, we recommend George Batchelor’s recent biography
of Taylor,® and recent review articles.*5

Interference fringes by feeble light

We began our tour of Taylor’s research by discussing his
first scientific paper, which was published in 1909. This
was his only paper that was not classical physics, but it
nonetheless bore the experimental characteristics that
were to appear throughout his later work. At the request
of J. J. Thomson, Taylor performed an experiment (in the
children’s room of his parent’s house!) to determine
whether there was a qualitative change in a diffraction
pattern when the intensity of the light is reduced greatly.?
Taylor indicates that Thomson believed that there would
be a change in the pattern. Taylor took photographs of the
shadow of a needle, varying the intensity of light by
shielding the light source with smoked glass screens.
When decreasing the intensity he increased the exposure
time to keep the total amount of light on the photograph
constant. The longest experiment took three months, cor-
responding to the intensity of a candle more than a mile
away; some of the experiments even took place while Tay-
lor was on a yachting trip. Taylor observed no change in
the diffraction pattern, wrote a two-page paper describing
this result, and then dropped this line of research.

Motion of discontinuities in gases

Taylor’s second scientific paper, published in 1910 when
he was 25 years old, was awarded the Smith Prize for sen-
ior mathematics students at Cambridge University. This
paper solved a long-standing, fundamental problem in
fluid mechanics. George Gabriel Stokes had noticed that
there was the real possibility that the velocity in a gas
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could form discontinuities in a finite time, if a slower
region of gas were moving ahead of a faster region. Such
discontinuities, now called “shocks,” are easily predicted
from the equations of ideal (inviscid) fluid dynamics. They
represent singularities, in that velocity gradients diverge
at the discontinuity. At the time, it was not known what
happened after such shocks formed. Taylor demonstrated
that in a real gas the discontinuity would be eliminated by
dissipative effects (both viscosity and thermal heating).
This solution (realized qualitatively in 1908 by Rayleigh,
then 66 years old) is one of the most basic features in gas
dynamics.

The Taylor-Couette paper

The first topic we treated in detail was Taylor’s 1923
paper on instabilities of Couette flow—the flow between
concentric rotating cylinders. An interesting feature is the
paper’s motivation. Taylor begins by observing that “A
great many attempts have been made to discover some
mathematical representation of fluid instability, but so far
they have been unsuccessful in every case.” The concept
of stability had been well formulated by this time, and
many authors (among them Lord Kelvin, Rayleigh, Heinz
Hopf, and Arnold Sommerfeld) had attempted to predict
the instability of a solution to the equations of fluid
dynamics. Unfortunately, however, no calculation agreed
with experiments. The failure to predict instabilities led
to great consternation and confusion. For example, Hopf
suggested that perhaps it was necessary to take account
of the rigidity of the boundaries to explain the instability
of shear flows in channels. (Taylor commented: “There
seems little to recommend this theory as an explanation of
the observed turbulent motion of fluids.”®)

Taylor’s paper is a major intellectual accomplish-
ment, representing the first example where a stability cal-
culation quantitatively matches an experiment. The fact
that the comparison worked is due in large part to Tay-
lor’s insight that among the different possible experi-
ments, the rotating cylinder apparatus is best suited for
quantitative comparison between theory and experiment.
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GEOFFREY INGRAM TAYLOR (right) at age 69, in his laborato-
ry with his assistant Walter Thompson. (AIP Emilio Segré
Visual Archives.)

The work demonstrated unambiguously that both the
approach used in the stability calculation, and its under-
lying assumptions (the boundary conditions), were cor-
rect. As Goldstein states in his review article, “Simplifica-
tions of the mathematics . .. were to follow, but there
could be no [more] controversy.”?

Taylor’s paper was equally remarkable for its techni-
cal detail, both theoretical and experimental. The calcula-
tions leading to an instability threshold for inner and
outer cylinders of arbitrary radii are tedious, producing
formulas that are each about a page long, involving deter-
minants of Bessel functions. (In lecture, we avoided the
algebra by using the thin-gap limit, first introduced by
Harold Jeffreys in 1928, and expanded on at length by
Subrahmanyan Chandrasekhar.”) At the time, determin-
ing the numerical values of the formulas was itself a sig-
nificant challenge. Designing an experiment consistent
with the assumptions of the calculation was equally deli-
cate—in particular, end effects of the cylinder could not
influence the onset of the instability. The results for the
instability boundary as a function of the rotation rates of
the two cylinders were in beautiful agreement with the the-
ory, as the figure on page 35 shows, and several of Taylor’s
photographs of the flow are still reproduced. Rather amus-
ingly, Taylor actually measured more points on the stabili-
ty boundary experimentally than he calculated theoretical-
ly, presumably due to the tediousness in evaluating the
Bessel function determinants!

At the end of the paper, Taylor described his observa-
tions of the panoply of nonlinear states that exists in the
rotating cylinder apparatus above the instability threshold.
As the relative speed of the cylinders is increased, the flow

Course outline

Overview of G. L. Taylor’s research
State of fluid mechanics in 1900
Diffraction at low light levels
Regularization of shocks
Taylor-Couette flow
Saffman-Taylor problem
Rayleigh-Taylor instability

Eddy diffusivity in the atmosphere
Diffusion by continuous movements
Statistical theory of turbulence
Vortex breakdown
Taylor-Proudman theorem

Particle motion and Taylor columns
Taylor-Aris dispersion

Measurement of molecular diffusivities
Dislocations and the strength of solids

Introductory remarks
Taylor’s first two papers

Instabilities

Turbulence

Rotating flows
Dispersion in laminar flows

Solid mechanics
Swimming at low Reynolds

numbers
Drops and bubbles Drop deformation and breakup
Viscosity of mixtures; emulsions
Electrohydrodynamics Leaky dielectric model
Conical interfaces
Surface tension Thin films, peeling, water bells
Shocks
Explosions




INSTABILITY during the peeling of adhesive tape.
G. I Taylor studied this problem in 1964 (at the
age of 78), and demonstrated that viscous stresses
in the adhesive fluid contribute significantly to its
“stickiness.” When the adhesive 1s peeled from a
solid surface (the blue region), competition
between applied pressure and surface tension leads
to an instability with a well-defined wavelength
(squiggles). Interest in the relevance of fluid
mechanical instabilities to adhesion continues to
this day. (For a review, see the article by Cyprien
Gay and Ludwik Leibler, PHYSICS TODAY,
November 1999, page 48.) (Image © Felice
Frankel, Massachusetts Institute of Technology;
from F. Frankel, G. M. Whitesides, On the Surface
of Things, Chronicle Books, San Francisco, 1997.)

goes from steady, to a time varying “barber-pole” pattern of
vortices, to a turbulent irregular flow. As summarized by
Richard Feynman in his lectures:
The main lesson to be learned from [Taylor’s
work] is that a tremendous variety of behavior
is hidden in the [Navier-Stokes equations].
All the solutions are for the same equations,
only with different values of the [rotation
speed]. We have no reason to think that there
are any terms missing from these equations.
The only difficulty is that we do not have the
mathematical power today to analyze
them . ... That we have written an equation
does not remove from the flow of fluids its
charm or mystery or its surprise.®

Diffusion by continuous movement

Taylor’s work on turbulence centered on relentless
attempts to describe turbulence by formulating mathe-
matical theories that could be directly and quantitatively
compared with experimental data. During the semester,
we discussed five of Taylor’s papers on turbulence, start-
ing with his monumental (and largely unreadable) 1915
paper, “Eddy motion in the atmosphere,” and ending with
his 1939 paper introducing what is now known as the Tay-
lor-Greene vortex. In the latter paper, Taylor constructs a
solution to the Navier—Stokes equations that demon-
strates the turbulent energy cascade.

In general terms, Taylor’s contribution to our under-
standing of turbulence was his observation that “by anal-
ogy to the kinetic theory of gases” one should find a sta-
tistical description. He therefore aimed to find ways of
predicting statistical properties of the flow. His most pen-
etrating contribution was probably the formula (given in
a 1923 paper)

d(x?) _
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where (-) denotes a time average, x denotes position, and
C(t — & = Wt — Y (t)? is the velocity correlation
function.

At one level this formula is a trivial mathematical
identity and is independent of the details of how an actu-
al fluid moves. However, the formula represents two dif-
ferent types of experimental measurements: The left-
hand side gives the dispersion of tracers in the flow and
can be measured by observing the diffusivity of dye in a
turbulent flow; the right-hand side can be measured by
sampling the velocity field at different times, and meas-
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uring the correlations. Taylor demonstrated that the cor-
relation function is sufficient to specify the statistical
properties of a stationary random function, an idea that
has had great influence beyond the realm of fluid mechan-
ics. For example, Norbert Wiener writes, describing his
beginning research on random functions:

I was an avid reader of the journals, and in

particular of the Proceedings of the London

Mathematical Society. There I saw a paper by

G. 1. Taylor, later to become Sir Geoffrey Tay-

lor, concerning the theory of turbulence. ...

The paper was allied in my own interests, in

as much as the paths of air particles in turbu-

lence are curves and the physical results of

Taylor’s papers involve averaging or integra-

tion over families of curves.®
Wiener goes on to say that Taylor “represents a peculiar-
ly English type in science: the amateur with a profession-
al competence.” The above formula has had tremendous
impact on developing the theory of turbulence: To this day,
it is believed that the fundamental quantities to be predict-
ed from the governing equations are correlation functions.

Taylor dispersion

One of Taylor’s most useful results concerns the disper-
sion of a solute in a flowing fluid stream. The motivation
for this project was to understand the manner in which
drugs are dispersed in blood flow; other applications
abound. The idea is to consider the steady laminar flow in
a straight circular pipe of radius «, and understand how
an initially localized solute disperses with time.

If there were no molecular diffusion, the solute would
be spread out considerably by the flow, because of the
large velocity gradient across the pipe. Taylor recognized
that molecular diffusion actually impedes this dispersion:
Molecular diffusion forces the solute in the center of the
pipe to diffuse near the walls, where it moves more slow-
ly. Taylor demonstrated that if the concentration is denot-
ed ¢(r,z,t), where z lies along the pipe axis, and the area-
averaged cross-sectional concentration is (c)(z,t), then the
average concentration evolves according to the convective-
diffusion equation

¥*(c)
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here D=D|1+
where ( 5 D
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and D is the molecular diffusion constant.’® The solute
center of mass moves with the mean velocity (¢) and has
a Gaussian spread about the mean that increases in pro-
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portion to V D¢. The largest contribution to the dispersion
typically comes from the Ys((u)’a*D) term, which is
inversely proportional to the diffusion coefficient! Taylor
even used this idea to measure the molecular diffusion
constant, an approach that is used to this day."

Viscous hydrodynamics
The subject of viscous hydrodynamics was popularized in
the physics community by Edward Purcell’s article, “Life
at low Reynolds numbers,” in which he describes his work
with Howard Berg on understanding bacterial propul-
sion.’? What is perhaps not so well known is that the first
widely recognized work on this topic was Taylor’s.!3 Pur-
cell wrote
But at that time G. 1. Taylor’s paper in the
Proceedings of the Royal Society could con-
clude with just three references: H. Lamb,
Hydrodynamics; G.I. Taylor (his previous
paper); G. N. Watson, Bessel Functions. That
is called getting in on the ground floor.

Taylor’s interest in this subject was apparently stim-
ulated by his interaction with the zoologist James Gray of
Cambridge University. The basic difficulty of low-
Reynolds-number propulsion is that motion is reversible: By
reversing kinematical motions one always ends up at the
same starting place. Purcell popularized this idea through
his “scallop theorem,” which states that a scallop (an object
with only one joint) in a viscous fluid cannot swim.

Taylor investigated simple swimming situations
where reversibility is broken, to demonstrate how motion
is possible. For example, through explicit calculation he
demonstrated that transverse waves propagating along a
sheet submerged in a fluid cause the sheet to translate
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TAYLOR COLUMNS. When an object moves in a rotating flow,
it drags along with it a column of fluid parallel to the rotation
axis. This photograph shows the flow when a dyed drop of sili-
cone fluid (radius 2 cm) rises through a large tank of water
rotating at 56 rpm (From ref. 17.)

with uniform velocity. These ideas have found many
recent applications, from the design of micromechanical
machines to hypotheses about propulsion mechanisms in
unusual organisms. Also, Taylor developed the still-avail-
able educational film “Low Reynolds Number Flows,”
which is familiar to many and recommended to all as a
wonderful example of Taylor’s creativity and clarity.

Swimming snakes

Gray also provoked Taylor’s interest in the swimming of
snakes. How do various types of deformations of the snake
produce forward thrust? At first sight, this problem seems
intractable, because the flow generated by a snake is typ-
ically turbulent, and so theories do not really exist. Taylor
observed, however, that there is much experimental data
regarding the forces on cylinders in a turbulent flow, and
proceeded to use this data as the basis for his theory. By
modeling the snake as a sum of cylinders, he computed
the swimming velocity as a function of the deformation.
This allowed him to explain quantitatively features of
how snakes swim—for example, the wave amplitude of
the snake that makes it move the fastest. Perhaps his
most interesting discovery is that a snake with a rough
surface can swim forward by sending waves in the for-
ward direction. Taylor writes, “On showing [the result] to
Professor Gray, [he] called my attention to a set of photo-
graphs he had taken of a marine worm Nereis diversicol-
or which does in fact swim in this way.”'* And, as predict-
ed, the worm has a rough surface.

Taylor columns

In a steady, rapidly rotating flow with angular velocity Q,
the dominant forces are pressure gradients and Coriolis
forces, and the Navier-Stokes equations reduce to

2pQ X v=—Vp,
where p is the fluid density and p is the pressure. Taking
the curl of this equation, it follows that the velocity is
independent of the coordinate along the rotation axis. The
flow is therefore effectively two-dimensional. This result,
first demonstrated by Joseph Proudman in 1915, is now
called the Taylor-Proudman theorem.

Taylor’s name got attached because he addressed the
question of what happens if one tries to disturb the two-
dimensionality of the flow. In a paper published in 1923,
he reported placing a short cylinder in a rotating tank of
fluid and dragging the cylinder relative to the flow. With-
out rotation, of course, the motion of the short cylinder
would disturb the flow in all directions. How can this be
reconciled with Proudman’s result? The experiments
demonstrated what Taylor called a “remarkable” conclu-
sion: The flow remains two-dimensional! The solid object
(nearly) immobilizes an entire column of fluid parallel to
the rotation axis. Thus, in a rotating environment, a slow-
ly moving object behaves nearly as a solid cylinder extend-
ed parallel to the rotation axis. There are numerous appli-
cations of this idea to motions in atmospheres and oceans,
because surface topographic features produce “columnar”
disturbances that interfere with, or block, the flow at sub-
stantial elevations.



Electrohydrodynamics
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present, typically residing on the
interfaces between different fluids.
Thus, any electric field tangential to
the interface results in a tangential
stress, and this stress can be bal-
anced only by a viscous flow.

Taylor discovered this basic
notion when trying to explain an
experimental anomaly in the
observed shapes of dielectric drops in
a uniform external electric field. Sim-
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TAYLOR-COUETTE STABILITY DIAGRAM. This plot, from Taylor’s 1923 paper on the
instability of flow between two coaxial rotating cylinders, was the first example of a
theoretical calculation of a fluid-flow instability that quantitatively agreed with experi-
ments. The stability boundary as a function of the rotation speed of the outer cylinder
(ordinate) and inner cylinder (abscissa) is shown. The dashed line Q R? = Q R} is a
previous theory by Lord Rayleigh. The solid points represent experimental measure-
ments; the open points, theoretical calculations of the stability boundary. Due to the
complexity of evaluating numerically the formulas from the theoretical calculations,
there are more experimental data points than theoretical points.

ple energetics predicts that such a

drop should elongate in the direction

of the field, whereas for some fluids the drop actually
shortened in the field direction. Because the tangential
electrical stresses described above require a steady vis-
cous flow for balance, the drop shape cannot be obtained
by energy minimization. The characterization of liquids
using both a conductivity and a dielectric constant is
referred to as the “leaky dielectric model.”

Nuclear explosions

No article about Taylor would be complete without includ-
ing the often told story about his calculation of the energy
in a nuclear blast. Fables of this story abound. As told by
Taylor himself,'® during the early years of World War II he
was told by the British government about the develop-
ment of the atomic bomb, and was asked to think about
the mechanical effect produced by such an explosion. He
realized that the energy released from the bomb would
quickly lose memory of its initial shape and distribution,
and would produce a strong shock in the air. The structure
of the shock far from the ground would be well-approxi-
mated as spherical.

With these simplifications Taylor recognized that the
parameters in the problem are the energy E, the density p
of air, the pressure p in the air, the radius R(¢) of the blast
wave, and the time ¢ since the blast. Because the blast is
very strong, the air pressure will not affect the wave very
much, and so p is not a relevant parameter. Taylor real-
ized that this implies that there is a single dimensionless
number characterizing the process; the reader can verify
that Et¥pR? is dimensionless.

Because this quantity does not depend on any aspect
of the problem, it must be a constant. This implies that
the radius of the blast wave is given by

R(t) = c(Et%p)*®,

where c is a constant. In fact, it turns out that for air ¢ =
1.033 according to a calculation. Therefore, given a pic-
ture that shows the radius of the blast, a reference length
scale, and the time since the blast, one can deduce the
energy.

Much after the fact, Taylor analyzed photographs
taken by J. E. Mack of the first atomic explosion in New
Mexico. These pictures were taken at precise time inter-
vals from the instant of the explosion, and Taylor con-
firmed that the scaling law agrees very nicely with the

data. It is interesting to note that, of the papers written in
the early 1950s reporting independent discoveries of the
blast scaling law (authors including John von Neumann
and Leonid Sedov), only Taylor’s paper took publicly avail-
able data to show that the above equation agrees with
experiments.

There are many topics that we have not been able to
cover in this article, or in our course—among them, the
bulk of Taylor’s contributions to solid mechanics. Another
effort to design a course around Taylor’s papers would
likely arrive at a completely different list of topics. We
encourage interested readers to browse Taylor’s collected
works and to design their own course using his papers as
a gateway to the modern literature.

Many people provided constructive criticism of an early draft
of this article. We thank Herbert Huppert for many helpful
suggestions that improved the final manuscript.

References

1. G. K. Batchelor, ed., Scientific papers of G. 1. Taylor, Cam-
bridge U. P., Cambridge, England (1971).

2. S. Goldstein, Ann. Rev. Fluid Mech. 1, 1 (1969).

3. G. K. Batchelor, The Life and Legacy of G.I. Taylor, Cam-
bridge U.P., Cambridge, England (1996); reviewed in
PHYSICS TODAY, June 1997, p. 82.

. J. K. Bell, Experimental Mechanics, 1 (1995).

J. S. Turner, Ann. Rev. Fluid Mech. 29, 1 (1997).

. G. L. Taylor, Phil. Trans. Roy. Soc. Lond. A 223, 289 (1923).

. H. Jeffreys, Proc. Roy. Soc. Lond. A 118, 195 (1928). S. Chan-
drasekhar, Hydrodynamics and Hydromagnetic Stability,
Oxford U.P., Oxford, England (1961).

8. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lec-
tures on Physics, Addison-Wesley, Reading, Mass. (1964), vol.
2, p. 41.11.
9. N. Wiener, I am a Mathematician, MIT Press, Cambridge,
Mass. (1956).
10. G.I. Taylor, Proc. Roy. Soc. Lond. A 219, 186 (1953).
11. M. S. Bello, R. Rezzonico, P. G. Righetti, Science 266, 773
(1994).

12. E. M. Purcell, Am. J. Phys. 45, 3 (1977).

13. G. L. Taylor, Proc. Roy. Soc. Lond. A 209, 447 (1951).

14. G. 1. Taylor, Proc. Roy. Soc. Lond. A 214, 158 (1952).

15. J. R. Melcher, G.I. Taylor, Ann Rev. Fluid Mech. 1, 111

(1969). D. A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1995).

16. G. L. Taylor, Proc. Roy. Soc. 201, 11 (1949).

17. J. W. M. Bush, H. A. Stone, J. Bloxham, J. Fluid Mech. 282,

247 (1995). ]

MAY 2000 PHysics TopAY 35





