
A FRESH LOOK AT ENTROPY 
AND THE SECOND LAW OF 

THERMODYNAMICS 
I n days long gone, the sec­

ond law of thermodynam­
ics (which predated the first 
law) was regarded as per­
haps the most perfect and 
unassailable law in physics. 
It was even supposed to have 
philosophical import: It has 
been hailed for providing a 
proof of the existence of God 

The existence of entropy, and its 
increase, can be understood without ref­
erence to either statistical mechanics or 

heat engines. 

acting particles. Our aim 
here is to explore that foun­
dation. The full details can 
be found in reference 2. 

As Albert Einstein put 
it, "A theory is the more 
impressive the greater the 
simplicity of its premises, 
the more different kinds of 
things it relates, and the 
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(who started the universe off in a state of low entropy, 
from which it is constantly degenerating); conversely, it 
has been rejected as being incompatible with dialectical 
materialism and the perfectibility of the human condition. 

Alas, physicists themselves eventually demoted the 
second law to a lesser position in the pantheon-because 
(or so it was declared) it is "merely" statistics applied to 
the mechanics of large numbers of atoms. Willard Gibbs 
wrote: "The laws of thermodynamics may easily be 
obtained from the principles of statistical mechanics, of 
which they are the incomplete expression"1-and Ludwig 
Boltzmann expressed similar sentiments. 

Is that really so? Is it really true that the second law 
is merely an "expression" of microscopic models, or could 
it exist in a world that was featureless at the 10-s em 
level? We know that statistical mechanics is a powerful 
tool for understanding physical phenomena and calculat­
ing many quantities, especially in systems at or near equi­
librium. We use it to calculate entropy, specific and latent 
heats, phase transition properties, transport coefficients, 
and so on, often with good accuracy. Important examples 
abound, such as Max Planck's realization that by staring 
into a furnace he could find Avogadro's number, and Linus 
Pauling's highly accurate back-of-the-envelope calculation 
of the residual entropy of ice. But is statistical mechanics 
essential for the second law? 

In any event, it is still beyond anyone's computation­
al ability (except in idealized situations) to account for a 
very precise, essentially infinitely accurate law of physics 
from statistical mechanical principles. No exception to the 
second law of thermodynamics has ever been found-not 
even a tiny one. Like conservation of energy (the "first" 
law), the existence of a law so precise and so independent 
of details of models must have a logical foundation that is 
independent of the fact that matter is composed of inter-
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more extended its area of applicability. Therefore the deep 
impression which classical thermodynamics made upon 
me. It is the only physical theory of universal content con­
cerning which I am convinced that, within the framework 
of the applicability of its basic concepts, it will never be 
overthrown. "3 

In an attempt to reaffirm the second law as a pillar of 
physics in its own right, we have returned to a little­
noticed movement that began in the 1950s with the work 
of Peter Landsberg,4 Hans Buchdahl,5 Gottfried Falk, 
Herbert Jung,6 and others2 and culminated in the book of 
Robin Giles/ which must be counted one of the truly 
great, but unsung works in theoretical physics. It is in 
these works that the concept of "comparison" (explained 
below) emerges as one of the key underpinnings of the 
second law. The approach of these authors is quite differ­
ent from lines of thought in the tradition of Sadi Carnot, 
which base thermodynamics on the efficiency of heat 
engines. (See reference 8, for example, for modern exposi­
tions of the latter approach.) 

The basic question 
The paradigmatic event that the second law deals with 
can be described as follows . Take a macroscopic system in 
an equilibrium state X and place it in a room along with a 
gorilla equipped with arbitrarily complicated machinery 
(a metaphor for the rest of the universe), and a weight­
and close the door. As in the old advertisement for inde­
structible luggage, the gorilla can do anything to the sys­
tem-including tearing it apart. At the end of the day, 
however, when the door is opened, the system is found to 
be in some other equilibrium state, Y, the gorilla and 
machinery are found in their original state, and the only 
other thing that has possibly changed is that the weight 
has been raised or lowered. Let us emphasize that 
although our focus is on equilibrium states, the processes 
that take one such state into another can be arbitrarily 
violent. The gorilla knows no limits. (See figure 1.) 

The question that the second law answers is this: 
What distinguishes those states Y that can be reached 
from X in this manner from those that cannot? The 
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answer: There is a function of the equilibrium states, 
called entropy and denoted by S, that characterizes the 
possible pairs of equilibrium states X and Y by the 
inequality S(X) :s; S(Y). The function can be chosen so as 
to be additive (in a sense explained below), and with this 
requirement it is unique, up to a change of scale. Our 
main point is that the existence of entropy relies on only 
a few basic principles, independent of any statistical 
model...,..or even of atoms. 

What is exciting about this seemingly innocuous 
statement is the uniqueness of entropy, for it means that 
all the different methods for measuring or computing 
entropy must give the same answer. The usual textbook 
derivation of entropy as a state function, starting with 
some version of "the second law," proceeds by considering 
certain slow, almost reversible processes (along adiabats 
and isotherms). It is not at all evident that a function 
obtained in this way can contain any information about 
processes that are far from being slow or reversible. The 
clever physicist might think that with the aid of modern 

FIGURE 1. THE SECOND LAW OF THERMODYNAMICS 
says that increased entropy characterizes those final states 
of a macroscopic system that can be reached from a given 
initial state without leaving an imprint on the rest of the 
universe, apart from the displacement of a weight. The 
scenario shown here illustrates that the process can be 
quite violent. (a) A system in an equilibrium state X 
(blue) is placed in a room with a gorilla, some intricate 
machinery (green), and a weight. (b) The gorilla, machin­
ery, and system interact and the system undergoes a vio­
lent transition. (c) The system is found in a new equilibri­
um state Y (red), the gorilla and machinery are found in 
their original state, while the weight may have been dis-
placed. The role of the weight is to supply energy (via the 
machinery) both for the actions of the gorilla and for 
bringing the machinery and gorilla back to their initial 
states. The recovery process may involve additional inter­
actions between machinery, system, and gorilla-interac­
tions besides those indicated in (b) . 

computers, sophisticated feedback mechanisms, 
unlimited amounts of mechanical energy (represented 
by the weight) and lots of plain common sense and 
funding, the system could be made to go from an equi­
librium state X to a state Y that could not be reached 
by the primitive quasistatic processes used to define 
entropy in the first place. This cannot happen, how­
ever, no matter how clever the experimenter or how 
far from equilibrium one travels! 

What logic lies behind this law? Why can't one 
gorilla undo what another one has wrought? The 
atomistic foundation of the logic is not as simple as 
is often suggested. It concerns not only such matters 
as the enormous number of atoms involved (1023), 

but also other aspects of statistical mechanics that 
are beyond our present mathematical abilities. In 
particular, the interaction of a system with the 
external world (represented by the gorilla and 
machinery) cannot be described in any obvious way 
by Hamiltonian mechanics. Although irreversibility 
is an important open problem in statistical mechan­
ics, it is fortunate that the logic of thermodynamics 
itself is independent of atoms and can be understood 
without knowing the source of irreversibility. 

The founders of thermodynamics-Rudolf Clau­
sius, Lord Kelvin, Planck, Constantin Caratheodory, and 
so on-clearly had transitions between equilibrium states 
in mind when they stated the law in sentences such as 
"No process is possible, the sole result of which is that a 
body is cooled and work is done" (Kelvin). Later it became 
tacitly understood that the law implies a continuous 
increase in some property called entropy, which was sup­
posedly defined for systems out of equilibrium. The ongo­
ing, unsatisfactory debates (see reference 9, for example) 
about the definition of this nonequilibrium entropy and 
whether it increases shows, in fact, that what is suppos­
edly "easily" understood needs clarification. Once again, it 
is a good idea to try to understand first the meaning of 
entropy for equilibrium states-the quantity that our 
textbooks talk about when they draw Carnot cycles. In 
this article we restrict our attention to just those states; 
by "state" we always mean "equilibrium state." Entropy, 
as the founders of thermodynamics understood the quan­
tity, is subtle enough, and it is worthwhile to understand 
the "second law" in this restricted context. To do so it is 
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not necessary to decide whether Boltzmann or Gibbs had 
the right view of irreversibility. (Their views are described 
in Joel L. Lebowitz's article, "Boltzmann's Entropy and 
Time's Arrow," PHYSICS TODAY, September 1993, page 32.) 

The basic concepts 
To begin at the beginning, we suppose we know what is 
meant by a thermodynamic system and equilibrium 
states of such a system. Admittedly, these are not always 
easy to define, and there are certainly systems, such as a 
mixture of hydrogen and oxygen or an interstellar ionized 
gas, capable of behaving as though they were in equilibri­
um even if they are not truly so. The prototypical system 
is a so-called "simple system," consisting of a substance in 
a container with a piston. But a simple system can be 
much more complicated than that. Besides its volume, it 
can have other coordinates, which can be changed by 
mechanical or electrical means-shear in a solid or mag­
netization, for example. In any event, a state of a simple 
system is described by a special coordinate U, which is its 
energy, and one or more other coordinates (such as the 
volume V) called work coordinates. An essential point is 
that the concept of energy, which we know about from 
moving weights and Newtonian mechanics, can be defined 
for thermodynamic systems. This fact is the content of the 
first law of thermodynamics. 

Another type of system is a "compound system," 
which consists of several different or identical independ­
ent, simple systems. By means of mixing or chemical reac­
tions, systems can be created or destroyed. 

Let us briefly discuss some concepts that are relevant 
for systems and their states, which are denoted by capital 
letters such as X, X ' , Y, . . . . Operationally, the composi­
tion, denoted (X, X'), of two states X and X ' is obtained 
simply by putting one system in a state X and one in a 
state X' side by side on the experimental table and 
regarding them jointly as a state of a new, compound sys­
tem. For instance, X could be a glass containing 100 g of 
whiskey at standard pressure and 20 oc, and X' a glass 
containing 50 g of ice at standard pressure and 0 °C. To 
picture (X,X'), one should think of the two glasses stand­
ing on a table without touching each other. (See figure 2. ) 

Another operation is the "scaling" of a state X by a 
factor A> 0, leading to a state denoted AX. Extensive 
properties such as mass, energy, and volume are multi­
plied by A, while intensive properties such as pressure 
stay intact. For the states X and X' as in the example 
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FIGURE 2. ADIABATIC STATE CHANGES 
for a compound system consisting of a 
glass of whiskey and a glass of ice. The 
states (Y

1
,Y

1
' ) , (Y,,y;'), and Y3 are all adi­

abatically accessible from (X, X'). (Y
1
,Y/ ) 

can be reached by weight-powered stir­
rers (not shown) acting on each glass. 
(~,Y,') is obtained by bringing the two 
subsystems temporarily into thermal 
contact. }"; is obtained by pouring the 
whiskey on the ice and stirring; this is a 
mixing process and changes the system. 
The original state (X, X') is not adiabati­
cally accessible from any of the three 
states (J?;,Y/ ), (y;,y; '), or Y3• 

above, 1/2 Xis 50 g of whiskey at standard pressure and 20 
oc, and 1/sX' is 10 g of ice at standard pressure and 0 oc. 
Compound systems scale in the same way: 1/s (X, X') is 20 
g of whiskey and 10 g of ice in separate glasses with pres­
sure and temperatures as before. 

A central notion is adiabatic accessibility. If our goril­
la can take a system from X toY as described above-that 
is, if the only net effect of the action, besides the state 
change of the system, is that a weight has possibly been 
raised or lowered, we say that Y is adiabatically accessi­
ble from X and write X -< Y (the symbol -< is pronounced 
"precedes"). It has to be emphasized that for macroscopic 
systems the relation is an absolute one: If a transition 
from X to Y is possible at one time, then it is always pos­
sible (that is, it is reproducible), and if it is impossible at 
one time, then it never happens. This absolutism is guar­
anteed by the large powers of 10 involved-the impossi­
bility of a chair 's spontaneously jumping up from the floor 
is an example. 

The role of entropy 
Now imagine that we are given a list of all possible pairs 
of states X,Y such that X -< Y. The foundation on which 
thermodynamics rests, and the essence of the second law, 
is that this list can be simply encoded in an entropy func­
tion S on the set of all states of all systems (including 
compound systems), so that when X and Yare related at 
all, then 

X -< Y if and only if S(X) ~ S(Y). 

Moreover, the entropy function can be chosen in such a 
way that if X and X' are states of two (different or identi­
cal) systems, then the entropy of the compound system in 
this pair of states is given by 

S(X,X') = S(X) + S(X '). 

This additivity of entropy is a highly nontrivial assertion. 
Indeed, it is one of the most far-reaching properties of the 
second law. In compound systems such as the whiskey/ice 
example above, all states (Y,Y') such that X -< Y and X' -< 
Y' are adiabatically accessible from (X,X'). For instance, 
by letting a falling weight run an electric generator one 
can stir the whiskey and also melt some ice. But it is 
important to note that (Y,Y') can be adiabatically accessi­
ble from (X,X') without Y being adiabatically accessible 
from X . Bringing the two glasses into contact and sepa­
rating them again is adiabatic for the compound system, 



like "heat" or "reversible 
engines"; not even "hot" and 
"cold" are needed. Besides 
the "obvious" conditions "X -< 
X for all X'' (reflexivity) and 
"X-< Y and Y-< Z implies X 
-< Z" (transitivity), one needs 
to know that the relation 
behaves reasonably with 
respect to the composition 
and scaling of states. By this 
we mean the following: 

FIGURE 3. DEFINITION OF ENTROPY. One can define the entropy of 1 kg of water in a given 
state (represented by the orange color) by obtaining the state from a fraction A kg of steam in a 
fixed, standard state (red) and a fraction 1 - A kg of ice in a fixed, standard state (blue), with 
the aid of a device (green) and a weight (yellow) . The device returns to its initial state at the 

I> Adiabatic accessibility is 
consistent with the composi­
tion of states: X -< Y and Z -< 
W implies (X, Z) -< (Y, W). 
I> Scaling of states does not 
affect adiabatic accessibility: 
If X -< Y, then AX -< AY. 

end of the process, but the weight may end up raised or lowered. The entropy S , measured 
in units of S , is the maximum fraction A = A for which the transformationw~~' 1 kg of 

I> Systems can be cut adia­
batically into two parts: If 0 < 
A < 1, then X-< ([1 - A]X,AX), 
and the recombination of the 
parts is also adiabatic: ([1 -

water in the"gi~en (orange) state is possible. Tht;ystem of steam and ice is used here only for 
illustration. The definition of entropy need not involve phase changes. 

but the resulting cooling of the whiskey is not adiabatic 
for the whiskey alone. The fact that the inequality S(X) + 
S(X') :::; S(Y) + S(Y') exactly characterizes the possible 
adiabatic transitions for the compound system, even when 
S(X) <::: S(Y), is quite remarkable. It means that it is suffi­
cient to know the entropy of each part of a compound sys­
tem to decide which transitions due to interactions between 
the parts (brought about by the gorilla) are possible. 

Closely related to additivity is extensivity, or scaling 
of entropy, 

S(AX) = AS(X), 

which means that the entropy of an arbitrary mass of a 
substance is determined by the entropy of some standard 
reference mass, such as 1 kg of the substance. Without 
this scaling property, engineers would have to use differ­
ent steam tables each time they designed a new engine. 

In traditional presentations of thermodynamics, 
based for example on Kelvin's principle given above, 
entropy is arrived at in a rather roundabout way that 
tends to obscure its connection with the relation -<. The 
basic message we wish to convey is that the existence and 
uniqueness of entropy are equivalent to certain simple 
properties of the relation -< . This equivalence is the con­
cern of reference 2. 

An analogy leaps to mind: When can a vector field 
E(x) be encoded in an ordinary function (potential) ¢(x) 
whose gradient is E? The well-known answer is that a 
necessary and sufficient condition is that curl E = 0. The 
importance of this encoding does not have to be empha­
sized to physicists; entropy's role is similar to the poten­
tial's role, and the existence and meaning of entropy are 
not based on any formula such asS= -2., .p . lnp ., involv­
ing probabilities p . of "microstates." Ent~opy is' derived 
(uniquely, we hope)' from the list of pairs X -< Y; our aim is 
to figure out what properties of this list (analogous to the 
curl-free condition) will allow it to be described by an 
entropy. That entropy will then be endowed with an 
unambiguous physical meaning independent of anyone's 
assumptions about "the arrow of time," "coarse graining," 
and so on. Only the list, which is given by physics, is 
important for us now. 

The required properties of -< do not involve concepts 

A]X,AX) -< X . 
I> Adiabatic accessibility is stable with respect to small 
perturbations: If (X,c:Z) -< (Y,c: W) for arbitrarily small c: > 
0, then X -< Y. 

These requirements are all very natural. In fact, in 
traditional approaches they are usually taken for granted, 
without mention. They are not quite sufficient, however, 
to define entropy. A crucial additional ingredient is the 
comparison hypothesis for the relation -<. In essence, this 
is the hypothesis that equilibrium states, whether simple 
or compound, can be grouped into classes such that if X 
and Y are in the same class, then either X -< Y or Y -< X. 
In nature, a class consists of all states with the same mass 
and chemical composition-that is, with the same amount 
of each of the chemical elements. If chemical reactions 
and mixing processes are excluded, the classes are small­
er and may be identified with the "systems" in the usual 
parlance. But it should be noted that systems may be com­
pound, or consist of two or more vessels of different sub­
stances. In any case, the role of the comparison hypothe­
sis is to ensure that the list of pairs X -< Y is sufficiently 
long. Indeed, we shall give an example later of a system 
whose pairs satisfy all the other axioms, but that is not 
describable by an entropy function. 

Construction of entropy 
Our main conclusion (which we do not claim is obvious, 
but whose proof can be found in reference 2) is that the 
existence and uniqueness of entropy is a consequence of 
the comparison hypothesis and the assumptions about 
adiabatic accessibility stated above . In fact, if X 0, X, and 
X

1 
are three states of a system and A is any scaling factor 

between 0 and 1, then either X-< ([1 - A]X
0
,AX) or ([1 - A] 

X
0
,AX

1
) -< X, by the comparison hypothesis. If both alter­

natives hold, then the properties of entropy demand that 

S(X) = (1 - A)S(X
0

) + AS(X
1

) . 

If S(X0) * S(X1), then this equality can hold for at most 
one A. With X and X1 as reference states, the entropy is 
therefore fixed, apart from two free constants, namely the 
values S(X

0
) and S(X

1
). 

From the properties of the relation -< listed above, one 
can show that there is, indeed, always a 0 :::; A :::; 1 with 
the required properties, provided that X0 -<X-< X1. It is 
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equal to the largest A, denoted Amax' such that ([1 - AJX0, 

AX) -< X. Defining the entropies of the reference states 
arbitrarily as 8 (X

0
) = 0 and 8(X

1
) = 1 unit, we obtain the 

following simple formula for entropy: 

S(X) = Amax units . 

The scaling factors (1 - A) and A measure the amount of 
substance in the states X

0 
and Xl' respectively. The for­

mula for entropy can therefore be stated in the following 
words: S(X) is the maximal fraction of substance in the 
state xl that can be transformed adiabatically (that is, in 
the sense of -<) into the state X with the aid of a comple­
mentary fraction of substance in the state X

0
• This way of 

measuring Sin terms of substance is reminiscent of an old 
idea, suggested by Pierre Laplace and Antoine Lavoisier, 
that heat be measured in terms of the amount of ice melt­
ed in a process. As a concrete example, let us assume that 
X is a state of liquid water, X

0 
of ice and X

1 
of vapor. Then 

S(X) for a kilogram of liquid, measured with the entropy 
of a kilogram of water vapor as a unit, is the maximal 
fraction of a kilogram of vapor that can be transformed 
adiabatically into liquid in state X with the aid of a com­
plementary fraction of a kilogram of ice. (See figure 3.) 

In this example the maximal fraction A cannot be 
achieved by simply exposing the ice to the v~por, causing 
the former to melt and the latter to condense. That would 
be an irreversible process-that is, it would not be possi­
ble to reproduce the initial amounts of vapor and ice adi­
abatically (in the sense of the definition given earlier) 
from the liquid. By contrast, Amax is uniquely determined 
by the requirement that one can pass adiabatically from X 
to ([1 - AmaxJX0,AmaxX1) and vice versa. For this transfor­
mation it is necessary to extract or add energy in the form 
of work-for example by running a little reversible Carnot 
machine that transfers energy between the high-temper­
ature and low-temperature parts of the system (see figure 
3). We stress, however, that neither the concept of a 
"reversible Carnot machine" nor that of "temperature" is 
needed for the logic behind the formula for entropy given 
above. We mention these concepts only to relate our defi­
nition of entropy to concepts for which the reader may 
have an intuitive feeling. 

By interchanging the roles of the three states, the def­
inition of entropy is easily extended to situations where X 
-< X 0 or X1 -< X. Moreover, the reference points X

0 
and X

1
, 

where the entropy is defined to be 0 and 1 unit respec­
tively, can be picked consistently for different systems 
such that the formula for entropy will satisfy the crucial 
additivity and extensivity conditions 

S(X ,X') = S(X) + S(X') and S(AX) = AS(X). 

It is important to understand that once the existence 
and uniqueness of entropy have been established, one need 
not rely on the Amax formula displayed above to determine it 
in practice. There are various experimental means to deter­
mine entropy that are usually much more practical. The 
standard method consists of measuring pressures, volumes, 
and temperatures (on some empirical scale), as well as spe­
cific and latent heats. The empirical temperatures are con­
verted into absolute temperatures T (by means of formulas 
that follow from the mere existence of entropy but do not 
involveS directly), and the entropy is computed by means of 
formulas like t:.S = f(dU + PdV)I T , with P the pressure. 
The existence and uniqueness of entropy implies that this 
formula is independent of the path of integration. 

Comparability of states 
The possibility of defining entropy entirely in terms of the 
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relation -< was first clearly stated by Giles.7 (Giles's defi­
nition is different from ours, albeit similar in spirit.) The 
importance of the comparison hypothesis had been real­
ized earlier, however.4-6 All the authors take the compari­
son hypothesis as a postulate-that is, they do not 
attempt to justify it from other, simpler premises. Howev­
er, it is in fact possible to derive comparability for any pair 
of states of the same system from some natural and 
directly accessible properties of the relation -<. 2 The deri­
vation uses the customary parameterization of states in 
terms of energy and work coordinates. But such parame­
terizations are irrelevant, and therefore not used, for our 
definition of entropy-once the comparison hypothesis 
has been established. 

To appreciate the significance of the comparison 
hypothesis, it may be helpful to consider the following 
example. Imagine a world whose thermodynamical sys­
tems consist exclusively of incompressible solid bodies. 
Moreover, all adiabatic state changes in this world are 
supposed to be obtained by means of the following ele­
mentary operations: 
I> Mechanical rubbing of the individual systems, increas­
ing their energy. 
I> Thermal equilibration in the conventional sense (by 
bringing the systems into contact). 
The state space of the compound system consisting of two 
identical bodies, 1 and 2, can be parameterized by their 
energies, U1 and U2 . Figure 4 shows two states, X and Y, 
of this compound system, and the states that are adiabat­
ically accessible from each of these states. It is evident 
from the picture that neither X -< Y nor Y -< X holds. The 
comparison hypothesis is therefore violated in this hypo­
thetical example, and so it is not possible to characterize 
adiabatic accessibility by means of an additive entropy 
function . A major part of our work consists of understand­
ing why such situations do not happen-why the compar­
ison hypothesis appears to hold true in the real world. 

The derivation of the comparison hypothesis is based 
on an analysis of simple systems, which are the building 
blocks of thermodynamics. As we already mentioned, the 
states of such systems are described by an energy coordi­
nate U and at least one work coordinate, such as the vol­
ume V. The following concepts play a key role in this 
analysis: 
I> The possibility of forming "convex combinations" of 
states with respect to the energy U and volume V (or other 
work coordinates). This means that given any two states 
X and Z of one kilogram of our system, we can pick any 
state Yon the line between them in U,V space and, by tak­
ing appropriate fractions A and 1 - A in states X and Z, 
respectively, there will be an adiabatic process taking this 
pair of states into state Y. This process is usually quite 
elementary. For example, for gases and liquids one need 
only remove the barrier that separates the two fractions 
of the system. The fundamental property of entropy 
increase will then tell us that S(Y) ~ AS(X) + (1 - A)S(Z). 
As Gibbs emphasized, this "concavity" is the basis for 
thermodynamic stability-namely positivity of specific 
heats and compressibilities. 
I> The existence of at least one irreversible adiabatic 
state change, starting from any given state. In conjunc­
tion with the concavity of S, this seemingly weak require­
ment excludes the possibility that the entropy is constant 
in a whole neighborhood of some state. The classical for­
mulations of the second law follow from this. 
I> The concept of thermal equilibrium between simple 
systems, which means, operationally, that no state 
changes take place when the systems are allowed to 
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exchange energy with each other at fixed work coordi­
nates. The zeroth law of thermodynamic says that if two 
systems are in thermal equilibrium with a third, then 
they are in thermal equilibrium with one another. This 
property is essential for the additivity of entropy, because 
it allows a consistent adjustment of the entropy unit for 
different systems. The zeroth law leads to a definition of 
temperature by the usual formula liT = (iJS/iJU) . 

Using these notions (and a few others of a ~ore tech­
nical nature), the comparison hypothesis can be estab­
lished for all simple systems and their compounds. 

It is more difficult to justify the comparability of 
states if mixing processes or chemical reactions are taken 
into account. In fact, although a mixture of whiskey and 
water at 0 °C is obviously adiabatically accessible from 
separate whiskey and ice by pouring whiskey from one 
glass onto the rocks in the other glass, it is not possible to 
reverse this process adiabatically. Hence it is not clear 
that .a block of a frozen whiskey/water mixture at -10 oc, 
say, IS at all related in the sense of -< to a state in which 
whiskey and water are in separate glasses. Textbooks 
usually appeal here to gedanken experiments with "semi­
permeable membranes" that let only water molecules 
through and hold back the whiskey molecules, but such 
membranes really exist only in the mind. 10 However, 
without invoking any such device , it turns out to be possi­
ble to shift the entropy scales of the various substances in 
such a way that X-< Y always implies S(X) s S(Y). The 
converse assertion, namely, S(X) s S(Y) implies X -< Y 
provided that X and Y have the same chemical composi­
tion, cannot be guaranteed a priori for mixing and chemi­
cal reactions, but it is empirically testable and appears to 
be true in the real world. This aspect of the second law, 
comparability, is not usually stressed, but it is important; it 
is challenging to figure out how to turn the frozen 
whiskey/water block into a glass of whiskey and a glass of 
water without otherwise changing the universe, except for 
moving a weight, but such an adiabatic process is possible. 

What has been gained? 
The line of thought that started more than 40 years ago 
has led to an axiomatic foundation for thermodynamics. It 
is appropriate to ask what if anything has been gained in 
comparison to the usual approaches involving quasi-stat­
ic processes and Carnot machines on the one hand and 
statistical mechanics on the other hand. There are sever­
al points . One is the elimination of intuitive but hard-to-

FIGURE 4. HYPOTHETICALLY NONCOMPARABLE STATES. The 
graph shows the state space of a pair of identical, incompress­
ible solids with the energies U

1 
and U

2 
as the only coordinates 

of the compound system. The states adiabatically accessible 
from X (yellow I orange) and Y (red/ orange) are shown under 
the assumption that the only adiabatic changes consist in com­
bina.tions of r.ubbing (inc:easing U1 or U ) and thermal equili­
brat~on (movt~~ to the dtagonal VI = u,). In this example, adi­
abatic accesstbt!tty cannot be characterized by an entropy func­
tion, because neither a transformation from X to Y nor from Y 
to X is possible. The comparison hypothesis does not hold 
here. In the real world, however, it always holds. 

define concepts such as "hot," "cold," and "heat" from the 
foundations of thermodynamics. Another is the recogni­
tion of entropy as a codification of possible state changes, 
X -< Y, that can be accomplished without changing the 
rest of the universe in any way except for moving a 
weight. Temperature is eliminated as an a priori concept 
and appears in its natural place- as a quantity derived 
from entropy and whose consistent definition really 
depends on the existence of entropy, rather than the other 
way around. To define entropy, there is no need for special 
machines and processes on the empirical side, and there 
is no need for assumptions about models on the statistical 
mechanical side. Just as energy conservation was eventu­
ally seen to be a consequence of time translation invari­
ance, in like manner entropy can be seen to be a conse­
quence of some simple properties of the list of state pairs 
related by adiabatic accessibility. 

If the second law can be demystified, so much the 
better. If it can be seen to be a consequence of simple, 
plausible notions, then, as Einstein said, it cannot be 
overthrown. 
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