WE HEAR THAT

APS to Bestow Honors at March Meeting

The upcoming March meeting of the American Physical Society will be held in Minneapolis. (See the meeting preview on page 41 of this issue.) Several of APS's awards for 2000 will be presented during this gathering.

The David Adler Lectureship Award in the Field of Materials Physics will go to **Bertram Batlogg** for his contributions, in the words of the citation, to "materials physics, including superconductivity, colossal magnetoresistance, heavy fermions and organic semiconductors" and for his "excellence in lecturing on materials science and industrial research to both scientific and lay audiences." Batlogg is head of the materials physics research department at Lucent Technologies, Bell Laboratories in Murray Hill, New Jersey.

Paul K. Hansma, a professor of physics at the University of California, Santa Barbara, will be presented with the Biological Physics Prize. The award citation commends Hansma for his "pioneering contributions to the development of biological scanning probe microscopy and for the molecular resolution imaging of biological molecules in aqueous solutions."

Gerald J. Dolan, Theodore A. Fulton, and Marc A. Kastner will share the Oliver E. Buckley Prize in Condensed Matter Physics. The three are being honored by APS for their "pioneering contributions to single electron effects in mesoscopic systems." Dolan is a private consultant, primarily for Immunicon Corp in Pennsylvania. Fulton is retired from but remains a consultant to Lucent Technologies, Bell Laboratories, in Murray Hill, New Jersey. And Kastner is the Donner Professor of Physics and also the head of the physics department at MIT.

This year's John H. Dillon Medal for Research in Polymer Physics will go to **Wesley Burghardt**, an associate professor of chemical engineering at Northwestern University and the Piercy Visiting Professor in the chemical engineering and materials science department at the University of Minnesota. Burghardt is being recognized for "important discoveries in the structure and flow properties of complex polymeric materials and pioneering experimental methods to

study them."

The recipient of the High Polymer Physics Prize this year is **Lewis J. Fetters**. Fetters, a senior research associate at ExxonMobil Research and Engineering Co in Annandale, New Jersey, is being cited for "transforming the art of anionic polymerization into a powerful tool of polymer physics, creating and using polymers with precisely defined molecular architectures to advance our understanding of entanglement, miscibility, and microphase separation."

Paul Linford Richards, a professor of physics at the University of California, Berkeley, will garner the Frank Isakson Prize for Optical Effects in Solids. APS is citing Richards for his "development of innovative infrared techniques and pioneering research in far infrared spectroscopy."

Calvin F. Quate and H. Kumar Wickramasinghe are corecipients of the Joseph F. Keithley Award for Advances in Measurement Science. The two are being honored for "pioneering contributions to nanoscale measurement science through their leadership in the development of a range of nanoscale force microscopes that have had a major impact in many areas of physics." Quate is associated with Stanford University. where he is the Leland T. Edwards Professor (Research) of Engineering, a research professor of electrical engineering, and research professor of applied physics (by courtesy). Wickramasinghe is manager of imaging science and measurement technology in the physical sciences department at IBM's T. J. Watson Research Center in Yorktown Heights, New York.

Robert J. Birgeneau, the dean of the school of science at MIT, will receive the Julius Edgar Lilienfeld Prize. Birgeneau is being cited by APS for "using neutron and x-ray scattering to elucidate the structure, phase transitions, and excitations of materials that are paradigms of important statistical mechanical models" and for his "ability to convey the excitement of physics to a broad range of audiences."

The Maria Goeppert-Mayer Award goes this year to **Sharon C. Glotzer** in recognition of her "ingenious use of computational physics to probe a wide range of novel materials under different conditions, and for demonstrating the existence and nature of spatially-correlated dynamic heterogeneities in glass-forming liquids." Glotzer is both the cofounder and director of the Center for Theoretical and Computational Materials Science and a physicist in the polymers division at the National Institute of Standards and Technology in Gaithersburg, Maryland.

Michael L. Falk, a postdoctoral fellow in the division of engineering and applied sciences at Harvard University, will be the recipient of the Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics. Falk is garnering the award for "developing novel computational diagnostics to visualize the microscopic processes controlling deformation and fracture in simulated amorphous solids, and for using the insights obtained from the simulations to develop a dynamical theory of low-temperature shear deformation in those materials."

The Lars Onsager Prize will be shared by J. Michael Kosterlitz and David J. Thouless. APS is citing Kosterlitz, a professor of physics at Brown University, for "the introduction with David J. Thouless of the theory of topological phase transitions, as well as his subsequent quantitative predictions by means of early and ingenious applications of the renormalization group." APS is recognizing Thouless, a professor of physics at the University of Washington, for "the introduction with J. Michael Kosterlitz of the theory of topological phase transitions, as well as fundamental contributions to our understanding of electron localization and the behavior of spin glasses."

Chauncey Starr, the president emeritus of the Electric Power Research Institute in Palo Alto, California, will be honored with the George E. Pake Prize. The award citation notes Starr's "visionary leadership and physics contributing to the establishment of a worldwide nuclear power industry for peaceful purposes."

The Earle K. Plyler Prize for Molecular Spectroscopy will go to **Michael D. Fayer**, a professor of chemistry at Stanford University. Fayer is being recognized for "the development of optical and infrared ultrafast spectro-

scopic methods, and especially for experiments using these methods to measure dynamical processes in condensed phase systems."

IN BRIEF

Last month, Jochen R. Schneider joined the board of directors of the German Electron-Synchrotron (DESY) in an expansion of the board from five to six members. The new directorship oversees research with synchrotron radiation. Robert Klanner is the new DESY research director, in charge of elementary particle physics. He succeeds Albrecht Wagner, who became director general of DESY last July.

In a ceremony at Rockefeller University last November, Steven Weinberg received the university's 1999 Lewis Thomas Prize, which honors scientists for their artistic achievement. He was cited for "his extraordinary achievements in conveying, with passionate clarity, the ideas, history, explanatory power and aesthetic dimensions of fundamental physics." Weinberg holds the Josey Regental Chair in Science at the University of Texas at Austin and is a member of both the physics and astronomy departments.

Robert J. Birgeneau, the dean of the school of science at MIT for the last eight years, has been tapped to be the next president of the University of Toronto. He wil assume his new position on 1 July.

Last September, Paul S. Peercy became the new dean of the University of Wisconsin—Madison's College of Engineering. Since 1995, Peercy had been president of SEMI/SEMATECH, a nonprofit consortium of semiconductor industry suppliers, based in Austin, Texas.

After 21 years as editor of Reviews of Scientific Instruments, Thomas H. Braid retired from the journal at the end of last year. His successor is Albert T. Macrander of Argonne National Laboratory.

Gordon Thomas retired from Lucent Technologies, Bell Laboratories last December and has moved to MIT, where he is a visiting professor of physics in the Harrison Spectroscopy Laboratory.

In October, Fusion Power Associates presented its 1999 Distinguished

Career Awards to **Thomas H. Stix**, a professor emeritus of astrophysical sciences at Princeton University and a former associate director for academic affairs at the Princeton Plasma Physics Laboratory; J. Bryan Taylor, a professor at Culham Science Centre in Oxfordshire, England; and Masaji Yoshikawa, a former president of the Japan Atomic Energy Research Institute. FPA also presented its 1999 Excellence in Fusion Engineering Awards to Per Peterson and to Michael D. Williams in October. Peterson is a professor of nuclear energy at the University of California, Berkeley and chair of the university's Energy and Resources Group. Williams is head of the engineering and technical infrastructure department at the Princeton Plasma Physics Laboratory.

Alan Chodos, a senior research physicist and lecturer in physics at Yale University, is the new assistant executive officer of the American Physical Society. He succeeds **Barrett Ripin**, whose five-year term ended last month.

Benoit Mandelbrot, who coined the term "fractal" in the 1970s, has been appointed the Sterling Professor of Mathematical Sciences at Yale University. He is also an IBM fellow emeritus at the T. J. Watson Research Center in Yorktown Heights, New York.

Dimitrios Cokinos and C. Ruth Kempf, both researchers at the U.S. Department of Energy's Brookhaven National Laboratory, were honored in November by the American Nuclear Society for their contributions to nuclear safety and nonproliferation. Cokinos garnered the 1999 Standards Service Award for "his years of leadership and dedication to setting standards for the safe and efficient design and operation of nuclear reactors." Kempf received the 1999 Women's Achievement Award.

OBITUARIES

Henry Way Kendall

Henry Way Kendall, who, with Jerome I. Friedman and Richard E. Taylor, won the 1990 Nobel Prize in Physics for establishing experimentally that quarks exist, died on 15 February 1999 while fresh-water diving in Florida. The range of his accomplishments, commitments, and avocations is reminiscent of prodigiously energetic and versatile Victorian scientists. He was a key figure in a

groundbreaking development in fundamental physics, a world-class mountaineer in his younger years, a photographer and diver at the professional level, and an outstanding

HENRY WAY KENDALL

leader in bringing the concerns of scientists about the societal impact of technology to public attention.

Henry was born in Boston on 9 December 1926. In his own words, from his Nobel autobiography: "I developed, or had been born with, an active curiosity and interest in things mechanical, chemical and electrical, and do not remember when I was not fascinated with them and devoted to their exploration." After obtaining an undergraduate degree in mathemat-

ics at Amherst College in 1950, he earned his doctorate at MIT in 1954 with a difficult experiment on the spectrum of positronium, which had recently been discovered by his research adviser Martin Deutsch.

In 1956, following a postdoctoral fellowship

at what later became Brookhaven National Laboratory, Henry joined Stanford University's physics department. There he met Friedman and Taylor, who were to become his