
Let’s meet tonight’s lucky
contestants, ladies and

gentlemen, all ready to play
Guess My Number, for the
grand prize of ONE MILLION
DOLLARS!”

The suave host turns to
the group of three eager-look-
ing people, and addresses the
young woman first:

“You are Alice, from Cambridge, Massachusetts, and,
I think, a research physicist?”

“Yes.”
“We don’t get many of those on the show. Welcome to

Guess My Number!
“And next we have Bob, a quantum mechanic from

Oxford, England. Good to have you, Bob!”
Bob moves to join Alice as the host continues smooth-

ly on to the last guest.
“And last, but not least, welcome to Charles, a com-

puter scientist from New York. It’s good to have three peo-
ple from such completely different walks of life . . .”

Charles begins to say, “Well actually . . . ,” but the
host moves straight on with the show, a professional who
knows well the value of every second on prime-time tele-
vision.

“Ladies and gentlemen, in a moment Alice, Bob, and
Charles are going to step into the three isolation booths
and play Guess My Number. But before they do so, let’s
make sure we all know the rules of the game.

“Alice, Bob, and Charles, you are going to sit in our
three isolation booths. You can each take anything you
can carry into the booths, but once you are in there, you
will not be able to communicate with each other, or with
anyone else, except me, until the end of the game. Do you
understand?”

A calm murmur of “Yes” comes from the contestants.
They seem quite happy and eager to get on with the game.

“I see you are each carrying a small case. You seem
well prepared! Now, one of you will be the decision maker.
Have you already elected your decision maker?”

The contestants indicate their agreement that Alice
will be the decision maker.

“Good! Now, this is how the game works. I have before
me a bowl of apples. Once you are all in the booths, I will
take up to four apples from the bowl and divide them
between the three of you. Before giving them out, I may
cut one or more apples in half, but I will not cut them into
any smaller pieces. So each of you will receive either noth-
ing, or half an apple, or one apple, or one and a half

apples, and so on. Although
you won’t know how many
apples I started with, you will
know that you have shared
between you a whole number
of apples—or possibly no
apples at all! I hope every-
thing is clear so far? We
wouldn’t want to miss that
million-dollar jackpot just for

a little misunderstanding, would we?”
The laborious detailing of the rules is really for the

benefit of the viewers, of course, and the host is doing her
best to keep it interesting.

“Now, you ask, how are you going to win that jackpot?
Well, tonight, that’s going to be up to you, Alice. As deci-
sion maker, all you have to do is decide whether you think
you and your two fellows have, between you, an even or an
odd number of apples. Is it an even number, like zero, two
or four, or an odd number, either one or three? And
remember, you only have one of the three pieces of the
puzzle! Ladies and gentlemen, that looks a like a tough
job for our decision maker, Alice! So we at Guess My Num-
ber will allow her fellow contestants, Bob and Charles, to
lend her a hand. Bob and Charles, you will each have a
flag, and after looking at your piece of apple you can hold
your flag either up or down. Alice can’t see what you are
doing, but I will inform her of the position of each of your
two flags, either up or down. With this information, and
knowing what she herself received, she will then make
her choice.

“Each round that Alice’s team beats the odds and
chooses correctly will bring them closer to the grand prize,
and if they complete ten successful rounds, they will win
the million-dollar jackpot! But if they guess incorrectly,
the game will be over and they will leave with one of sev-
eral merchandise prizes furnished by our sponsors. That’s
all there is to it!”

The audience has been listening hard, and some
begin to think through whether Bob and Charles will be
able to tell Alice what she needs to know. Old hands have
come along with their own schemes; they are itching to
have a go at the game. The host, with a twinkle in her eye,
addresses the obvious question to the contestants.

“Now, you three have, I am sure, gotten together
beforehand to work out a scheme to win at Guess My
Number. So have many contestants before you, but none
have managed to beat the system. Would you care to
share with us the method you propose to use?”

The contestants demur. They are keeping their secret
to themselves! The contestants on this game always do.
These ones appear quite confident and keen to get down
to business, but so have the many poor triplets before
them who went away with a consolation prize, not the big
jackpot for ten correct answers in a row.

“Alice, Bob, and Charles, please enter your isolation
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booths, and good luck!”
The three make their way into

the booths, each carrying a case that
looks quite heavy for its size. The
audience can see them through the
window, but they can’t see each
other. They open their cases on the
desks before them, and get their
flags ready.

The host fills the time gap with
a bit of patter, and the musicians
provide a suitably tension-building
background. The first three pieces of
apple are distributed, passed
through a little drawer on each
booth. We see Alice, Bob, and
Charles all adjusting something
inside their cases, then Bob and
Charles swiftly raise or lower their
flags. The host reminds the audi-
ence that the contestants can take
anything they like into the booths,
but the booths are carefully isolated
against every form of communica-
tion, including radio transmission or
low-frequency sound.

“Alice, I see Bob’s flag is up, and Charles’s flag is
down. Have you reached your decision?”

“Yes, Debbie. I think it’s an even number of apples.”
“Alice, you said an even number, and I can reveal to

you that I divided up two apples, which is an even num-
ber, so you are right!”

The audience breathes a sigh of relief. But the game
moves immediately on to another round. The apples are
divided and distributed, Bob and Charles indicate with
their flags, and, to mounting astonishment, Alice guesses
right again and again. Eight times, nine times, then ten
times, and a big fanfare sounds the winning of the jackpot.
An excited round of applause greets the news, and the con-
testants are invited to step out and learn of their success.

Of course, this is going to happen by chance every
eighteen or so runs of the game (see later), and the design-
ers of the program have based their calculations on this,
knowing that the program will be
much more successful if someone
wins the jackpot every now and then.

The host asks Alice, Bob, and
Charles if they would like to play
again, for a chance to either double
or halve their winnings. Of course,
since the unfavorable 18-to-1 odds
lead to statistically expected losses
of $416 000, everyone knows that
the only sensible thing is to quit
while they are on top. But these
three seem super-confident. There is
no dissuading them, and the game
continues, this time with a
vengeance: The apples are divided
into multiples of a quarter, not just a
half! But surely something is up?
Alice continues to get it right every
time. Another ten times! The audi-
ence suspects the game has been
rigged. The host senses the atmos-
phere is getting cool. Time for a com-
mercial break!

Among the more alert viewers
back at home, the scientific back-

ground of the three contestants did
not go unnoticed. Nevertheless, the
mathematically trained quickly
worked out that once Alice looks at
her own apple, she can reduce to
eight the sixteen possibilities for
Bob’s and Charles’s apples, using
the rule that the total is a whole
number of apples. Four of these
eight possibilities make an even
number, four an odd. Bob and
Charles can use their flags to fur-
ther reduce the possibilities for
Alice, so that half the time she
knows the required result, and half
the time she has to guess, giving her
an overall 75% chance of success per
round. However, that is as far as
they can go. Whatever strategy they
choose, and whatever prior informa-
tion they shared before the game,
they can’t pin down the remaining
possibilities for Alice any further.
One of them needs to be allowed to
send another bit of information! (In

the harder version using quarter apples, Alice needs two
further bits, making four in all. This is a maximum; fur-
ther subdividing the apples does not increase the infor-
mation needed by Alice, though the proof of this is more
involved.) The program designers no doubt employed
some mathematicians, maybe backed up by some infor-
mation scientists, to confirm exactly this argument.

Telepathy or science?
The astute viewers couldn’t help noticing, though, an
interesting combination of quantum physics and informa-
tion science among this bunch of contestants. They called
up their local quantum information physicist, who lis-
tened carefully to the whole setup, then with a smile
explained:

“This is a simple but clear example of what we call
entanglement-assisted communication. It is described in
two papers by Richard Cleve, Harry Buhrman and Wim

van Dam1,2 (and some of the ques-
tions had been raised though not
answered by Ilan Kremer3). Those
contestants are well-known charac-
ters to us, and what they are carry-
ing in their three cases is a techno-
logical marvel, but something per-
fectly well allowed by the laws of
physics: namely, three small quan-
tum information processors, storing
a collection of ten pre-entangled
triplets of quantum bits, or qubits.

“Unlike classical bits, that
encode only binary information (like
even/odd or up/down) as a 0 or a 1,
quantum bits are represented by a
quantum state that can either be
one of the definite states +0¬ and +1¬,
or a linear combination of those
states. Furthermore, quantum theo-
ry predicts, and recent experiments
have confirmed, that pairs or larger
groups of particles can be prepared
in a joint quantum state, which they
maintain even when separated by
large distances. In such an ‘entan-

AliceAlice
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gled state,’ the particles behave in
some respects like a single entity.

“Before the show, Alice, Bob,
and Charles prepared ten triplets of
qubits, every one in the completely
entangled state +000¬ ⊕ +111¬. Each
contestant has, placed in their infor-
mation processors, one qubit in the
triplet. Their goal is to encode infor-
mation in the joint state without
destroying the entanglement, and
then to reveal the winning answer
by measurement.

“During the game, the modera-
tor gives Alice, Bob, and Charles,
respectively, xa, xb, xc apples, where
xi ⊂ 0, 1/2, 1 or 3/2, and i = a, b, or c.
(Actually, xi can be larger than 3/2,
as long as xa + xb + xc = 4, but adding
two apples to any contestant’s total
doesn’t affect the result). They then
each go to the first so far unused
qubit in their processor, and apply
the rotation +0¬∀0+ ⊕ exp(xip=++⊗1)
+1¬∀1+. The resulting joint state is
either +000¬ ⊕ +111¬ (when xa ⊕ xb ⊕
xc is even) or +000¬ ⊗ +111¬ (when xa ⊕ xb ⊕ xc is odd).

“To enable Alice to know which of these two orthogo-
nal states they jointly own, each person next applies the
Hadamard rotation, +0¬ O (+0¬ ⊕ +1¬)/=+2, +1¬ O (+0¬ ⊗ +1¬)/=+2,
to their qubit. The resulting state is a three-qubit superpo-
sition of all the states of even parity, (+000¬
⊕ +011¬ ⊕ +101¬ ⊕ +110¬)/2 or all the states of odd parity, (+111¬
⊕ +100¬ ⊕ +010¬ ⊕ +001¬)/2. They each measure their qubit (in
the basis +0¬, +1¬), which results in the collapse of the super-
position state to one of its components. Bob and Charles tell
Alice the result of their measurement, by a simple agreed
scheme such as flag up means zero, flag down means one,
and Alice, having her own measurement result already at
hand, immediately knows the parity of the three measure-
ment results and so the answer to the original problem.”

Entanglement-assisted communication 
complexity
The game of Guess My Number is
just an introduction to the concept of
entanglement-assisted communica-
tion. What is striking about the sub-
ject is that the communication is all
classical: Only classical bits and
pieces are transmitted and received,
so one would have thought that clas-
sical reasoning about the amount of
information required to be sent
would be valid. That it is not is a
particularly clear illustration that
the science of information cannot be
divorced from physics.

It is obvious that what is going
on is closely related to the famous
Bell inequalities for nonlocal corre-
lations between Einstein-Podolsky-
Rosen (EPR) pairs, although it is
equally well known that Bell–EPR
correlations cannot in themselves be
used for communication. That is, the
existence of entanglement at sepa-
rated spatial locations does not
reduce the number of communica-

tion bits needed to convey a piece of
information between the locations.
In entanglement-assisted communi-
cation, we accept this fact, and
examine instead situations where
the knowledge sought by Alice, or any
of the parties, is a function of classical
information which, like the entangle-
ment, is initially distributed among
the parties. Typically the sought-after
knowledge will have the size of a sin-
gle bit (an even or odd number of
apples, in the case of Guess My Num-
ber), which will be small enough that
the fundamental restrictions on com-
munication are not violated.

Note that entanglement-assist-
ed communication is very close to
quantum communication, because
classical bits plus entanglement can
serve to transmit quantum bits by
teleportation.4

Guess My Number involves just
a one or two bit difference between
the information that must be trans-
mitted in a classical solution and

the minimum required for the “correct” solution. It is nat-
ural to ask whether larger savings from quantum entan-
glement are possible. One way is to offer Alice, Bob, and
Charles m rounds of apples all at once, and ask Alice to
give a single yes/no reply to the question: Does every
round in the set contain an even number? Clearly, with
entanglement assistance, she can use the method given
above and require only m signals from Bob and m from
Charles, making 2m in total, while it can be shown5 that
the classical limit requires at least 3m communicated bits.

A somewhat more powerful generalization can be
made in another direction. Suppose we allow more con-
testants to play the game. Rather than just three parties,
as in Guess My Number, we consider k parties who wish
to know whether their k lots of apple segments all add up
to an even or an odd number of whole apples, and fur-
thermore we allow the apples to be more finely divided. To

quantify the communication com-
plexity CC(P) of a distributed prob-
lem P, we consider one classical bit,
broadcast from one party to every
other party, to constitute one bit of
communication. So for Guess My
Number (Gmn) we have for the
quantum communication complexity
CCq(Gmn) ⊂ 2 and CCq(m-round
Gmn) ⊂ 2m, compared to the classi-
cal lower bounds CCc(Gmn) � 3 and
CCc(m-round Gmn) � 3m. The
result for the k-party game,
obtained by Buhrman and cowork-
ers,5 is a proof that as the number of
parties increases, the reduction in
communication complexity becomes
greater: The classical complexity
CCc(k-party Gmn) � (k log k) ⊗ k
becomes much larger than the quan-
tum complexity CCq(k-party
Gmn) = k ⊗ 1, where the latter
requires an entangled state of k
qubits. In the limit of many parties
(large k), this last quantum com-
plexity is an arbitrarily small frac-

BobBob

CharlesCharles
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tion of what would be
required classically. Far
from being of no use at all
for communication, entan-
glement seems now to be
extremely useful.

Then again, given the
severe difficulty of creating,
maintaining and manipu-
lating multipartite entan-
glement in practice, per-
haps this reduction by a fac-
tor of CCc /CCq 	 log k is not
so exciting. What we would
really like is a large reduc-
tion in communication com-
plexity, without the need to
involve many parties. It
turns out this can be
achieved. Buhrman, Cleve
and Avi Wigderson6 showed
a general way to adapt Lov
Grover’s searching algo-
rithm7 to the communica-
tion scenario, allowing
them to derive a result for
the important “disjointness
function,” which can be
viewed as the answer to the question: Do Alice and Bob
both have the same day free on some date in their private
n-page diaries? To solve this problem, a reliable answer
can be obtained using prior entanglement with
CCq(Disjn) 
 =+n log n, whereas every classical probabilis-
tic protocol has a complexity linear in n, that is,
CCc(Disjn) 	 n.

An even more striking difference between the classi-
cal and the entanglement-assisted solution was described
by Ran Raz8 for a problem involving an m-dimensional
vector space. This problem could be viewed as a game like
Guess My Number (though probably not on prime-time
TV) having two contestants, Alice and Bob. Alice is given
a vector and a specification of two orthogonal sub-spaces,
and Bob is given a rotation matrix, all specified to a pre-
cision of order log m bits. The total amount of information
they are supplied is therefore of order n � m2 log m. The
object of the game is essentially to guess: Into which sub-
space does Bob’s matrix rotate Alice’s vector? With two
subspaces to choose from, the answer is a Boolean func-
tion, R. It is not too difficult to show that the answer can
be found very efficiently with entanglement-assisted com-
munication: CCq(Rn) 
 log n. It is more challenging to
show that the classical communication complexity has a
lower bound CCc(Rn) � n1/4 / log n, which is significantly
higher than the quantum complexity.

The separation described by Raz is termed “exponen-
tial,” because the classical communication complexity grows
exponentially faster in the input size n than the quantum
complexity does. (Other types of exponential separation are
described by Andris Ambainis and collaborators9 as well as
by Buhrman and collaborators6.) In the same way, the sepa-
ration in the disjointness problem discussed above is called
“quadratic,” but this does not make the result less impres-
sive. In fact, if we examine the ratio CCc(Disjn) / CCq(Disjn),
we find that the “quadratic” reduction in complexity is much
larger than the “exponential” one.

The question of which distributed problems allow a
significant “quantum reduction” and which don’t is the
focus of much current research. But results that have
already been obtained, like the solutions to Guess My

Number and other prob-
lems described above,
were completely unexpect-
ed and have already given
us some profound insights
into the properties of
quantum mechanical sys-
tems and the nature of
information itself.

Consider the informa-
tion accounting in these
protocols. Since the classi-
cal protocol requires, say,
n bits to be transmitted,
but the entanglement-
assisted protocol only
needs something like
=+n log n transmitted bits,
then presumably each
transmitted bit is some-
how doing the work of
=+n / log n bits. The way to
make sense of that non-
sensical statement is to
realize that what is trans-
mitted is not, strictly
speaking, an abstract clas-
sical bit, but rather a two-

valued classical signal. In other words: A real physical
entity or change is transmitted, and it is because this enti-
ty is coupled to the entangled systems at either end of
each transmission that the surprising gain is seen. By
calling the entity classical, when in fact all entities are
quantum mechanical, we just mean that the whole
process is insensitive to whether the transmitted entity is
in a mixed or a pure state, so it can be sent safely down
traditional communication channels without corrupting
the transmission. This is, of course, a tremendously easi-
er form of transmission than one that has to preserve the
full quantum state.

Experimental prospects
A laboratory demonstration of entanglement-enhanced
communication would be, in our opinion, a landmark in
quantum physics and quantum information science. It
would represent the first time that classical information
had passed from one place to another with less than the
classically required amount of communication.

The Guess My Number protocol is now close to being
experimentally achievable. All that is required is a reli-
able Greenberger, Horne, and Zeilinger (GHZ) experi-
ment10 (see the “Reference Frame” column by N. David
Mermin in PHYSICS TODAY, June 1990, page 9) that has
the ability to apply simple single-qubit rotations. The
GHZ experiments that have been reported to date,11,12

though impressive, don’t satisfy the demands of the game.
The NMR quantum information processing experiments
allow some of the properties of the GHZ state +000¬ ⊕ +111¬
to be demonstrated,11 but the technique provides no way
to assign Alice, Bob, and Charles to independent regions
of spacetime. The quantum optics experiments of Dik
Bouwmeester and coworkers12 do allow a realization of the
GHZ state with separated measurements on the three
particles, but only a tiny fraction (10⊗10) of the ensemble of
photon triplets is in the GHZ state, so Bob and Charles
would do better to use a classical strategy rather than risk
sending no information to Alice in almost every run. (We
don’t allow the contestants to post-select which runs they
want to use, because that involves the communication of
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huge amounts of information to Alice, which is also worse
than a purely classical strategy.) 

It is our hope that the ion trap experiments being
actively pursued in several labs will soon reach a stage
where this game could be played.13,14 Admittedly, the walls
between the booths of Alice, Bob, and Charles would only
be a few microns thick, and made of nothing, but we can
trust these three not to talk to each other. Before each
round of the game, they set up three trapped ions in the
GHZ state, then they each separately receive their num-
ber from the host and adjust the duration of a laser pulse
addressed to their ion, and each one reads out the final
state of their ion by resonance fluorescence. Reported
experimental achievements to date indicate that an over-
all reliability of one run of the experiment (determined by
the fidelity of the prepared GHZ state and the precision of
the rotations and measurements) could be expected to
attain the 60% level fairly soon. Thus, Alice could choose
right with certainty roughly 60% of the time and be forced
to make a random choice otherwise, for an overall chance
of guessing right of order (0.6 × 1) ⊕ (0.4 × 1/2) ⊂ 0.8.
These odds would be a statistically significant departure
from the classical 75% odds after about a thousand rounds
of the game, with no remaining “loopholes” connected
with detector efficiencies or other experimental factors.

As soon as such an experiment is done, the classical
data would speak for themselves: The most likely expla-
nation of the phenomenon, without quantum theory,
would be that the contestants managed to cheat—since
that is a much more likely hypothesis than the other one
which suggests itself, namely that they used telepathy!
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