
DIFFUSION-LIMITED 
AGGREGATION: A MODEL 
FOR PATTERN FORMATION 

N ature confronts us at 
every turn with pat­

terns-whether the stately 
spiral shapes of galaxies and 
hurricanes or the beautiful 
symmetries of snowflakes 
and silicon. A host of 
processes can play a role in 
forming natural patterns, 
though they usually involve 
an interaction between the 
transport and the thermody-

Recent insights from this 
well-studied model have led to many 

new applications-from river networks 
to oil recovery, and from 

electrodeposition to string theory. 

ity or contact the seed, to 
which it will stick irre­
versibly. Now introduce a 
third particle into the system 
and allow it to walk random­
ly until it either sticks to the 
two-particle cluster or 
escapes to infinity. Clearly, 
this process can be repeated 
to an extent limited only by 
the modeler's patience and Thomas C. Halsey 

namic properties of the matter and radiation involved. 
Typically, convection dominates the transport, in both 

terrestrial and astrophysical contexts. A classical example 
is Rayleigh-Benard convection. The instabilities and pat­
terns generated in a fluid that is convectively transport­
ing heat have implications in contexts as far-flung as lab­
oratory fluid dynamics and solar physics. 

In many natural settings, however, convection simply 
cannot occur. In those cases, diffusion usually dominates 
the transport. Consider the formation of river networks, 
frost on glass, or veins of minerals in geologic formations . 
Similarly, convection plays no role in many patterns in 
laboratory settings-for example, during ion deposition, 
electrodeposition, or other solidification processes. 

The patterns occurring in this type of system have 
some general features , which are captured by a number of 
simple models. The most famous of these models is diffu­
sion-limited aggregation. 1 DLA was originally introduced 
by Tom Witten and Len Sander as a model for irreversible 
colloidal aggregation, although they and others quickly 
realized that the model is very widely applicable. Recent 
progress in our understanding of DLA has hinged on scal­
ing studies in nonequilibrium statistical physics. Those 
studies have advanced dramatically in recent years, due 
in no small part to innovative applications of renormal­
ization group techniques. Yet, many aspects of DLA 
remain puzzling to specialists. 

The basic concept 
To understand the basics, consider colloidal particles 
undergoing Brownian motion in some fluid, and let them 
adhere irreversibly on contact with one another. Suppose 
further that the density of the colloidal particles is quite 
low, so one might imagine that the aggregation process 
occurs one particle at a time. We are then led to the fol­
lowing model. 

Fix a seed particle at the origin of some coordinate 
system. Now introduce another particle at a large dis­
tance from the seed, and let it perform a random walk. 
Ultimately, that second particle will either escape to infin-
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ingenuity (the required com­
putational resources grow rapidly with n, the number of 
particles). 

The clusters generated by this process are both high­
ly branched and fractal. The cluster's fractal structure 
arises because the faster growing parts of the cluster 
shield the other parts, which therefore become less acces­
sible to incoming particles. An arriving random walker is 
far more likely to attach to one of the tips of the cluster 
shown in figure la than to penetrate deeply into one of the 
cluster's "fjords" without first contacting any surface site. 
Thus the tips tend to screen the fjords, a process that evi­
dently operates on all length scales. Figure lb shows the 
"equipotential lines" of walker probability density near 
the cluster, confirming the unlikelihood of random walk­
ers penetrating the fjords . 

The example of Hele-Shaw flow 
The preceding model is quite interesting, but its general 
relevance is not immediately apparent, even for colloidal 
aggregation at finite concentration. To illustrate the 
model's generality, let us consider a very different prob­
lem: Hele-Shaw fluid flow.2 

In a thin cell, or in a porous medium, a fluid's veloci­
ty is proportional to the pressure gradient, 

k 
v = - - 'Vp, (1) 

f.L 

where k is the permeability in a porous medium and f.L is 
the viscosity of the fluid. If the fluid is incompressible, 
then taking the divergence of equation 1 yields the 
Laplace equation, 

(2) 

Suppose that into such a fluid we inject a second, 
immiscible fluid of much lower viscosity-the result is 
Hele-Shaw flow. An example beloved of the oil and gas 
industry is the injection of water into highly viscous oil in 
a porous rock (such as sandstone), which is a practical 
form of secondary oil recovery. Because of its low viscosi­
ty, the injected fluid's pressure can be set to a constant. 
Then the flow of the more viscous fluid is determined by 
equation 2 with a constant-pressure boundary condition, 
and its velocity is given by equation !-which thus also 
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determines the velocity of the interface between the 
two fluids. 

An experimental realization is displayed in fig­
ure 2. A high-viscosity light-colored hydrophobic 
fluid (2.5% hexadecyl end-capped polymer) was con­
fined to a space 0.4 mm thick between two glass 
plates 40 em across. Water (colored dark) was then 
injected. The branched structure clearly resembles a 
smeared-out version of the DLA simulation shown in 
figure 1. Remarkably, the mathematical descriptions 
of the two problems are almost identical. For 
Hele-Shaw flow, the pressure field satisfies the 
Laplace equation with constant-pressure boundary 
conditions, and the velocity of the interface between 
the two liquids is proportional to the gradient of the 
pressure. For DLA, the probability density of the 
randomly walking particle satisfies the Laplace 
equation, with the cluster's surface providing a surface of 
constant probability density. In this case, the probability 
of growth (not the growth rate) at the surface is given by 
the gradient of this probability density. Thus DLAis a sto­
chastic version of the Hele-Shaw problem. 

The relation between Hele-Shaw and DLA is even· 
more subtle than this, however. In 1984, Boris Shraiman 
and David Bensimon analyzed the growth of the surface 
in the Hele-Shaw problem in two dimensions, and 
reached the surprising conclusion that the problem is, in 
a mathematical sense, ill-posed. 3 An arbitrary initial sur­
face will generate singular cusps within a finite time after 
the initiation of growth, a mathematical reflection of the 
so-called Mullins-Sekerka instability in solidification. 
Thus, one must add some other physical effect, such as 
surface tension, to our model of the Hele-Shaw problem to 
hold these mathematical singularities at bay. In DLA, by 
contrast, the finite particle size prevents the appearance 
of any such singularities. 

In colloidal aggregation, the particles diffuse, while in 
Hele-Shaw flow, the fluid's pressure diffuses. In each 
case, the growth of the interface is sufficiently slow that 
we can use the Laplace equation rather than the diffusion 
equation to model the diffusing field . This suggests that 

FIGURE 1. (a) A DIFFUSION-LIMITED AGGREGATION (DLA) 
cluster in two dimensions. The red particles have attached 
most recently to the cluster and are concentrated at the tips 
of the growing branches. By contrast, relatively few parti­
cles penetrate deeply into the "fjords." (b) The lines repre­
sent the successive equipotentials of random walker proba­
bility densities for a two-dimensional DLA cluster growing 
from a single line. Clearly the random walker probability 
declines precipitously as one progresses down a fjord, lead­
ing to very small growth probabilities at the bottom com­
pared with the growing tips of the cluster. (Adapted from 
ref. 10, Mandelbrot and Evertsz.) 

the Laplacian model might be useful for general pattern 
formation problems in which diffusive transport controls 
the growth of a structure. This is indeed the case: DLA, or 
some variant of DLA, has been used to model phenomena 
as diverse as electrodeposition, surface poisoning in ion­
beam microscopy, and dielectric breakdown• Figure 3 
shows a mineralogical example, in which a deposition 
process on a rock surface has led to beautiful dendritic 
patterns. 

DLA, fractals, and multifractals 
DLA clusters are among the most widely known and stud­
ied fractal objects. The fractal dimension D connects the 
number of particles n with the size r ofthe cluster: n =rD. 
In two dimensions, one finds D "' 1.71, and in three 
dimensions, D "' 2.5. Numerical simulations have deter­
mined D in up to eight spatial dimensions, with the 
result5 that in high numbers of spatial dimensions d, the 
cluster fractal dimension D - d - 1. 

However, in two dimensions, where DLA has been 
most completely studied, its fractal nature is curiously 
fragile. For example, the fractal dimension is sensitive to 
the lattice structure of the problem. Thus, if one performs 
the succession of random walks, and grows the cluster 

NOVEMBER 2000 PHYSICS TODAY 37 



without an underlying lattice, one obtains the aforemen­
tioned D = 1. 71. However, if one studies precisely the same 
problem on a square lattice, one finds,6 for large clusters, 
that D crosses over to a value of 3/2. One of the few rigor­
ous results on the fractal properties of DLA is the bound 
D ~ 3/2 in two dimensions, proved by Harry Kesten.7 

In addition, the fractal dimension of DLA appears to 
depend weakly on the geometry of the simulation. The 
result D = 1. 71 is obtained for radial growth from a seed. 
However, for growth from a surface, or in a channel, one 
obtains a result closer to D = 1.67, a small but robust dif­
ference from the radial growth case that seems to persist 
to the asymptotic growth limit.8 

DLA clusters also exhibit "multifractality," a property 
of the growth probabilities on the surface of the cluster.9 

Consider a cluster of n particles. The ith particle has a 
probability Pi that the next particle to arrive at the clus­
ter will attach to it. The probability measure defined on 
the surface of a 2D cluster by the {p) is termed the "har­
monic measure," due to its relationship with the theory of 
analytic functions . The probabilities pi are distributed 
over a wide range, being relatively large at a cluster's 
outer tips and quite small deep within the fjords. It is thus 
natural to examine the scaling of the moments of this 
probability distribution. We can define a scaling function 
a(q) as an exponent, 

'fp; = n-u<q>. 
i=l 

(3) 

The existence of a nontrivial function a(q) implies multi­
fractality, which can be interpreted as each particular 
range of growth probability dp being associated with a dif­
ferent fractal dimensionality. Nevertheless, the cluster as 
a whole still has a unique fractal dimension-the maxi­
mum over the fractal dimensions of all the possible ranges 
of growth probability. 

For deterministic problems, the multifractal scaling 
function a(q ) often exists even for negative values of q. In 
those cases, the sum over probabilities in equation 3 is 
dominated by the very small values of Pi· For a stochastic 
problem such as DLA, one might be skeptical about the 
existence of such negative-q scaling behavior, which can 
be easily disrupted by fluctuations. Several researchers 
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FIGURE 2. RADIAL HELE-SHA W FINGERING. A dark-colored, 
low-viscosity fluid (water) injected into a light-colored high-vis­
cosity hydrophobic fluid led to this "smeared-out" version of 
the DLA growth depicted in figure 1. The surface tension 
between the two fluids prevented branching at small length 
scales. (Adapted from H. Zhao and J. V. Maher, Phys. Rev. E 
47, 4278, 1993.) 

have explored the breakdown of scaling for negative val­
ues of q; in general, the precise manner of the breakdown 
depends on the details of averaging the summation over 
the stochastic ensemble of DLA clusters.10 

The multifractal exponents corresponding to the har­
monic measure have recently been computed exactly by 
Bertrand Duplantier, using quantum gravity techniques, 
for a variety of "equilibrium" fractals in two dimensions, 
such as percolation or Ising clusters, and Brownian 
walks.11 The results agree qualitatively with the scenario 
envisioned for DLA clusters, including the breakdown of 
the formalism at sufficiently negative values of q. Alas, 
there is no indication as yet that these techniques can be 
extended to nonequilibrium problems. 

Scaling laws for DLA 
Multifractality is an interesting formal property in its 
own right, but its special interest for DLA lies in the exis­
tence of scaling laws connecting the multifractal proper­
ties of the probabilities to the fractal dimension of the 
cluster.12 The first, and best established, of these laws was 
found by Nikolai Makarov. He showed that for any con­
tinuous curve in two dimensions, the harmonic measure 
has an "information dimension" of one. Translated into 
our notation, this implies that 

dal =D-\ (4) 
dq q"l 

which is in good agreement with numerical results. 
A second scaling relation was proposed by Leonid 

Turkevich and Harvey Scher. Consider the particle of the 
cluster that is farthest from the center. One might expect 
that the cluster radius will grow only if a particle attaches 
to this "tip" particle; a process for which the next arriving 
particle will have a probability Ptip· Since in this event the 
maximum radius r max will grow by roughly the particle size 
a, it follows that dr mJdn ~ Ptipa. Given p tip as a function of 
either r or n, and the supplementary assumption that all 
radii-including the maximum radius-of the cluster scale 
in the same way with n, this equation can be integrated to 
give the dependence of r on n. 

Let us suppose that Ptip is the maximum over the set 
of all growth probabilities of the particles in the cluster. 
Then its scaling can be extracted from the multifractal 
behavior of the growth probability distribution, connect­
ing the asymptotic behavior of this distribution with the 
fractal dimension. The result is the Turkevich-Scher scal­
ing relation, 

D=l+D-1 dal 
dq q-oo 

(5) 

Relaxing our assumptions leads to an inequality, in which 
the dimension is greater than or equal to the right-hand 
side of equation 5. But therein lies a puzzle: It is the 
inequality, not the equality, that is satisfied by numerical 
results. 

An additional scaling relation is the "electrostatic" 
scaling relation that I proposed. It originates in a formula 
for the change in the capacitance C of a surface with small 



changes in the surface geometry. Since the growth of a 
cluster by the addition of particles results in a succession 
of relatively small changes in the surface, one can convert 
this formula into a form relevant for DLA: 

de-l 3 

-CX -~>i· dn , 
(6) 

In two dimensions, this yields "I.,pj ex 1/n. Equivalently, 
comparing with equation 3, u(3) = 1. In higher dimen-

FIGURE 3. MINERAL DENDRITES. The manganese oxide 
patterns on the surface of this rock are similar- both qualita­
tively and quantitatively-to those generated from simulations 
ofDLA. 

sions, this argument yields a modified scaling relation 
connecting D, d, and u(3). That relation agrees with 
numerical results. 

Theoretical approaches to DLA 
Naturally, the richness of DLA has attracted a number of 
theoretical attempts at a comprehensive analysis. Chal­
lenges and puzzles, however, abound. One difficulty facing 
all such attempts has been the absence of an easily identi­
fiable small parameter that would allow a perturbation 
analysis. DLA seems to yield fractal structures in which 
fluctuations are important up to arbitrarily high spatial 
dimensions; there is no upper critical dimension, above 
which mean-field theory would be valid. In fact, mean-field 
theory for DLA predicts D = d - 1, which only appears to 
be true in the limit of infinite spatial dimensionality. Also, 
as a nonequilibrium problem, DLA has no obvious rela­
tionship to the class of problems-mostly related to equi­
librium statistical mechanics-that can be solved in two 
dimensions by conformal field-theory techniques. 

The self-similarity ofDLAclusters suggests that their 
structure might be determined by a renormalization 
group approach. Several proposals for applying real-space 

Topological Scaling 

I n addition to the familiar properties of self-similarity, DLA 
clusters also exhibit the property of topological selfsimilari· 

ty, '8 which is much less well-known among statistical physicists. 
This concept is relevant for branched structures or trees, and 
originally arose as a means of analyzing river networks. 

Consider a branched structure, as shown schematically in 
the figure. Such a structure can be organized so that there is a 
"root" (for example, where a river network would empty into 
the sea or a lake) connected ultimately to "leaves" by various 
intermediate branches. DLA is topologically equivalent to such 
a tree. The Harton-Strahler (HS) index of this branched tree 
structure is defined recursively: Assign to each of the leaves an 
HS index of 1. Now, working toward the root, whenever two 
sub-branches join to make a new branch, assign to the new 
branch an HS index that is either 1) the greater of the HS 
indices of the two sub-branches, if they are unequal, or 2) equal 
to the HS index of the two sub-branches incremented by 1, if 
the two sub-branch indices are equal. In this way, one can even­
tually determine the HS index of the root. That root index is 
identified with the HS index of the entire tree, and is a measure 
of the tree 's overall topological complexity. 

One can then ask about the scaling of the HS index /H5 of a 
tree with respect to the total number N of leaves on the tree. A 
family of trees is said to be topologically self-similar if 

I = logN 
Hs IogB ' 

where B is a number rather misleadingly named the "bifurca­
tion number." Actually, B is more of a "B-furcation" number, 
because the overall tree can be viewed as being constructed of B 
trees of similar structure, each of which in turn is constructed 
of B smaller trees, and so forth down the length scales. 

Note that nowhere has this description referred to spatial 
dimensionality; indeed, random binary trees, which are defined 

without reference to dimensionality, have a value of B = 4. 
River networks, which are confined to two dimensions, typi­
cally have a value of B between 3 and 5. 

For DLA in two dimensions, the value of B is about 5.2. 
Thus DLA in two dimensions is "bushier" than river networks, 
even though its fractal dimension is lower. The branching 
model discussed in the main text predicts B - oo as d - 1, and 
B- 3.1 as d- oo, so that the infinite-dimensional DLA theory 
is nontrivial. " These predictions have been neither verified nor 
contradicted numerically. 
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renormalization methods to DLA have indeed been made. 
Probably the most sophisticated and successful has been 
the "fixed scale transformation" of Luciano Pietronero and 
his coworkers. 13 Although not a real-space renormaliza­
tion group in the classical sense, it is based on the enu­
meration of real-space configurations, and uses a trans­
formation between scales. It gives good results for the 
fractal and multifractal properties of DLA (and a number 
of other statistical physics problems) in two dimensions. It 
also shares with real-space renormalization groups the 
lack of a small perturbative parameter. 

My coworkers and I have taken an entirely different 
approach. 14 A noticeable feature of DLA is the way that 
branches screen one another simultaneously on a variety 
oflength scales. In two dimensions without a lattice, DLA 
typically has four or five large branches, which are more 
or less stable. At smaller length scales, however, branches 
compete in a never-ending vicious cycle of precarious sur­
vival. In fact, for any two neighbors among these smaller 
branches, at most one will survive as the cluster grows. 
The death of branches as they are screened by their neigh­
bors is balanced by the creation of new branches via 
microscopic tip-splitting processes. 

This picture of DLA growth led to the "branched 
growth model," in which the competition-on all length 
scales-between branches is represented as a dynamical 
system. The overall cluster dynamics is then represented 
as a large family of coupled dynamical systems running 
simultaneously. 

This approach allows approximate but quite detailed 
solutions for the cluster dynamics and fractal properties 
in all dimensions. Results forD from the branched growth 
model are in excellent agreement with numerical results, 
especially in high dimensions. This approach also allows 
one to compute multifractal properties; those results also 
agree with simulations. Finally, this approach is especial­
ly well suited for computing the topological self-similarity 
of the clusters (see the box on page 39). 

The Hastings-Levitov approach 
Recent work on DLA has been dominated by a new for­
mulation of the problem in two dimensions, due to 
Matthew Hastings and Leonid Levitov.15 Although it has 
always been known that the Hele-Shaw problem in two 
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' FIGURE 4. HASTINGS-LEVITOV ITERATED CONFORMAL MAP. 

Consider a map w = F.(z) that maps a circle in the z-plane 
(blue) onto an n-particle cluster in the w-plane (pink) . The map 
corresponding to the (n + !)-particle cluster is then construct­
ed by mapping, not a circle, but a circle with a bump f(z) at the 
pre-image of the position, e, of the new particle of size A. 

dimensions has a natural conformal representation, Hast­
ings and Levitov were the first to generate an elegant rep­
resentation of DLA growth as a problem in iterated con­
formal maps. Their formulation has revived interest in 
the DLA problem, by making available the powerful tools 
of analytic function theory. 

Consider a cluster of n particles. The Riemann map­
ping theorem assures us that there exists a conformal 
map, w = Fn(z), that maps a unit circle in the complex 
z-plane onto the surface of the cluster in the physical 
w-plane. If the exterior of the unit circle is mapped onto 
the cluster exterior, then it follows that Fn is an analytic 
function in the exterior of the unit circle. Conformal 
mapping then tells us that the angular distance between 
two points on the circle circumference in z-space is pro­
portional to the total growth probability along the arc 
connected by the images of those two points in the phys­
ical space. 

Hastings and Levitov gave a simple algorithm for the 
construction of the function Fn(z) corresponding to a given 
cluster. Suppose that a function, {A/z), giving a "bump" on 
the unit circle, correspondE to the ' attachment of one par­
ticle of size A at an angular position e in the z-plane (see 
figure 4). Then if Fn is the map for an n-particle cluster, 
the map for an (n + 1)-particle cluster, where the last par­
ticle is added at the image of the angular position e, is 
given by Fn(fA/z)). Iteration then allows the determina­
tion of the cluster map from the "one-particle" maps f. 
This is a concrete realization of what mathematicians 
refer to as a "stochastic Loewner process." Curiously, such 
processes have recently been used in the rigorous proof of 
some of Duplan tier's results for multifractal scaling. 

Hastings used the conformal representation of DLA 
growth to perform a momentum-space renormalization 
group calculation for the DLA dimension in two dimen­
sions. Although the result, D = 1.7, was highly accurate, 
the calculation suffered from the ever-present defect of 
perturbative approaches to DLA: It was based on a small 
parameter that wasn't small. 

The Hastings-Levitov algorithm lets us reproduce 
not only DLA, but also more general models. If the growth 
positions, e, in z-space (the pre-image of the physical 
space) are chosen randomly, we get DLA. But other choic­
es are possible. An interesting choice is e. = 21rD.n for the 
angle en of the nth particle, with n a constant. Although 
perhaps unphysical, this fully deterministic choice allows 
one to explore the significance of randomness in the DLA 
model. Benny Davidovitch and his colleagues16 have 
shown that for irrational values of the parameter n, the 
Hastings-Levitov model leads to branched structures 
qualitatively similar to DLA, but with significantly high­
er values of the fractal dimension D, as shown in figure 5. 
Scaling functions for the Hastings-Levitov model were 
computed, both for the stochastic (DLA) case and for the 
quasiperiodic (D, irrational) case; the functions gave 
numerically accurate results for the dimensions of both 
types of cluster in two dimensions. 



DLA, string theory, and beyond 
The most surprising recent development suggests a possi­
ble relationship between Hele-Shaw growth and string 
theoryY The starting point for this development is the 
remarkable fact that Hele--Shaw growth conserves the 
harmonic moments of the exterior domains . Those 
moments are defined by 

c k = fv z-kdxdy, (7) 

where the integral is over the exterior of the growing 
structure, z = x + iy is the ordinary complex variable, and 
divergences in the integral are suitably regularized. Of 
course, C0 varies as the Hele-Shaw pattern grows, but all 
of the other Ck are fixed during the growth. Thus, the 
problem of determining the patterns created by Hele­
Shaw growth is equivalent to determining the families of 
curves with different values of C0 but fixed values of the 
other Ck. 

This problem, in turn, can be related to a set of equa­
tions known as the "integrable Toda hierarchy," which 
also appear in 2D quantum gravity, and hence in string 
theory. In this relation, the parameters Ck become the 
degrees of freedom of this integrable hierarchy. Further­
more, it is known that a particular solution of the Toda 
hierarchy is related to the statistical mechanics of Hermit­
ian N x N matrices (which, in the large-N limit, is also 
believed to reproduce the scaling behavior of 2D quantum 
gravity). It is precisely in the N- oo limit that the Toda 
hierarchy maps exactly onto the pure Hele--Shaw problem; 
this suggests a strong, yet still obscure mathematical rela­
tionship between the latter problem and string theory. 

Next year marks the 20th anniversary of the Wit­
ten-Sander model, which opened the door to the wonder­
ful physics of diffusion-limited aggregation, and revived 
interest in the classical problem of Hele-Shaw growth. 
Those beautiful structures seemed, at the outset, likely 
to be understood by then-conventional techniques . 
Instead, there remains a certain amount of mystery. Our 
understanding of the phenomenology of DLA has cer­
tainly become quite sophisticated, and the new tech­
niques of Pietronero, Hastings and Levitov, and others 
have afforded new insights. In addition, it appears that 

FIGURE 5. A QUASIPERIODIC CLUSTER grown by the Hast­
ings-Levitov algorithm. 16 The successive growth sites were not 
chosen randomly; rather, a constant total growth probability 
(given in this case by the golden mean !1 = 0.618 ... ) was 
fixed between successive growth sites. The result is a "bushier" 
version of figure 1. (Courtesy of Benny Davidovitch.) 

there are deep connections between Hele-Shaw 
growth-and thus DLA-and 2D quantum gravity. Such 
newly discovered connections to other problems of theo­
retical physics suggests that the next 20 years are liable 
to be full of surprises . 
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