WE HEAR THAT

AAPM Honors Achievements in **Medical Physics**

he American Association of Physicists in Medicine announced its award winners for 1999 at its annual meeting, held in Nashville, Tennessee.

Faiz M. Khan, a professor and the head of the physics section in the ra-

KHAN

diation oncology department at the University of Minnesota's Medical School in Minneapolis, received the William D. Coolidge Award, the society's highest honor. Khan was recognized his distinguished career in medical physics that spans more than 30 years, for his contribu-

tions to AAPM, and for his contributions to the medical physics literature.

The Award for Achievement in Medical Physics, given for achievement in medical physics practice, education, or organizational affairs and professional activities, went posthumously to Joe Windham, who died in December 1998. Windham was the head of the radiological physics and engineering division of the department of diagnostic radiology at the Henry Ford Hospital in Detroit.

The Farrington Daniels Award, given for the best paper on radiation dosimetry published in Medical Physics during the previous year, went to David W. O. Rogers for his paper entitled "A New Approach to Electron-Beam Reference Dosimetry." Rogers is the leader of the ionizing radiation standards group at the Institute for National Measurement Standards of the National Research Council of Canada in Ottawa, and an adjunct professor of physics at Carleton University, also in Ottawa.

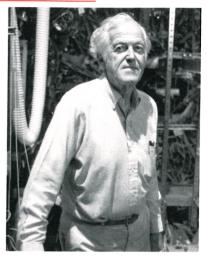
Willi A. Kalender and Marc **Kachelriess** were presented with the Sylvia Sorkin Greenfield Award for their paper entitled "Electrocardiogram-Correlated Image Reconstruction from Subsecond Spiral Computed

Tomography Scans of the Heart." This award is given for the best paper (other than on radiation dosimetry) published in Medical Physics during the previous year. Kalender is the director and a professor at the Institute of Medical Physics at the University of Erlangen-Nürnberg in Germany, and an adjunct associate professor in the medical physics department at the University of Wisconsin-Madison.

Kachelriess is a physicist at the same institute.

Rebecca Fahrig, of the J. P. Robarts Research Institute, at the London Health Sciences Centre in Ontario, Canada, won the John R. Cameron Young Investigators Award. The other Young Investigators Award winners were Indrin Chetty of UCLA and Kenneth Ruchala of the University of Wisconsin-Madison.

OBITUARIES Robert Fred Mozley


Robert Fred Mozley, a former associate director of the Stanford Linear Accelerator Center (SLAC), died in Stanford, California on 24 May from complications following abdominal surgery.

Born in Boston on 18 April 1917, Mozley received an AB from Harvard University in 1938. Following a short interval teaching high school in Hawaii and traveling extensively in Asia, he returned to the US in 1941, shortly before the US entered World War II. During the war, he worked at the Sperry Gyroscope Co, where he designed a range-tracking device for the tail-gun radar of the B-29 bomber.

From 1945 to 1950, Mozley was a graduate student at the University of California's Berkeley campus under the supervision of Luis Alvarez. He worked on the Berkeley 32 MeV proton linear accelerator, while, at the same time, embarking on a very ambitious thesis experiment to determine the halflife of the neutron by capturing decay electrons from neutron decay in an electron storage ring.

His neutron experiment was brought to an abrupt end by the explosion of a bank of nitrogen-filled cylinders. Consequently, he started a new PhD topic—namely, the determination of the atomic number dependence of positive photo-pion production using an apparatus built by Jack Steinberger. Mozley earned his PhD in 1950.

Mozley moved to Stanford University in 1953 and greatly improved the design and performance of the control system of the MARK III GeV linear accelerator, which he used to carry out numerous experiments. He then participated with his colleagues in the preliminary design of the SLAC electron linear accelerator, which led to the 1957 construction proposal for SLAC. He continued work at SLAC until his

ROBERT FRED MOZLEY

retirement in 1987.

While at SLAC, Mozley led a group that developed a two-meter-long streamer chamber, which was completed in 1967. The installation was used in a series of photoproduction experiments, which, among others, discovered the ρ' meson resonance. The experiments on the streamer chamber included work with kaon beams on hydrogen targets, and measurements of the form factor of the Klong decays and of deep inelastic muon scattering.

Starting in 1979, Mozley's group led a five-university collaboration to build the third (MARK III) large solid single spectrometer at the Stanford Positron Electron Accelerating Ring (SPEAR). Experiments on that detector produced a number of important measurements in the spectroscopy of charmed mesons, radiative J/φ decays, and refined the precision of parameters in tau physics.

Mozley's work on the MARK III experiment led to the construction of a similar detector at the Beijing Electron-Positron Collider, which, in some sense, is the heritage of his work at SPEAR.

After his retirement, Mozley main-