
CHAOTIC DYNAMICS AND THE 
ORIGIN OF STATISTICAL LAWS 

The problem of the founda­
tion of statistical physics 

emerged with the derivation 
by Ludwig Boltzmann1 of a 
kinetic equation for a gas of 
molecules that required 
monotonic growth of entropy. 
Boltzmann's theory leads to 
modern thermodynamics, 
and, for example, to the im­
possibility of gas spontane­
ously gathering in one part of 
a container in the absence of 
external forces . This result, 
known as the H-theorem, met 
with strong contemporary op­
position, especially from 
mathematician Ernst Zermelo. 

Chaotic dynamics in real systems does 
not provide finite relaxation time to 

equilibrium or fast decay of fluctuations, 
and chaotic systems are not completely 

random in the sense originally postulated 
for statistical systems. These properties 

may require rethinking some of the 
fundamental assumptions of 

thermodynamics. 

Ehrenfest published a very 
detailed article3 on 
Boltzmann's statistical ap­
proach to dynamical systems 
with a large number of de­
grees of freedom. They ana­
lyzed the main objections to 
Boltzmann's theory, known 
as Zermelo's and Losch­
midt's paradoxes. (See the 
discussion in the box on 
page 41). An advanced de­
scription of the paradoxes 
and responses to them can 
be found in the works of 
Mark Kac.4 In fact, Zer­
melo's and Loschmidt's para­
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The foundation of statistical laws, as understood by 
the modern physics community, encompasses three prin­
cipal aspects: the origin of statistical laws from determi­
nistic dynamical equations, the conditions of applicability 
of different statistical approximations, and criteria for the 
transition from deterministic to statistical behavior. The 
discovery of chaos in dynamical systems makes it neces­
sary to reconsider our views on each of these aspects, with 
potentially significant consequences. 

Zermelo's objections2 to Boltzmann's H-theorem were 
based on a nonrigorous application of a rigorous result of 
Henri Poincare, the so-called Poincare recurrence theorem. 
Another criticism came from Boltzmann's teacher, Josef 
Loschmidt, who pointed out that, due to the reversibility 
of dynamical equations, we can reverse all trajectories of 
a system and thereby return all system characteristics to 
their initial values. In particular, this reversal should 
occur with the entropy, which would then decrease on time 
reversal, in contradiction to Boltzmann's results. 

The drastic difference between statistical behavior, 
based on probabilistic laws, and pure deterministic behav­
ior, based on Hamiltonian dynamics, leads us to the 
following fundamental questions: Is the statistical descrip­
tion purely a technical (or instrumental) way to describe 
the dynamics, or a reflection of naturally existing random 
irregularities? Can we, starting from Hamiltonian dynam­
ics (as Boltzmann actually did), explain the appearance 
of thermodynamics (statistical physics, H-theorem, en­
tropy growth, and so on)? Going further, we may ask: Is 
the fact that it is impossible for molecules of gas uniformly 
distributed in a chamber to gather in full , or almost in 
full, in a part of the chamber without the help of external 
forces a real and absolute property of nature, or is it a 
result of the convenient use of some theoretical approxi­
mation methods? 

After Boltzmann's death in 1906, Paul and Tatiana 
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doxes apply not only to Boltzmann's theory, but also to 
any statistical theory whose results include monotonic 
entropy growth. Generalizing and broadening our problem, 
we may now ask: How can irreversible kinetic equations 
that appear to adequately describe physical reality follow 
from reversible dynamical equations? A formal resolution 
of the problem, following Boltzmann's idea, is based on a 
physically reasonable assumption known as the random 
phase approximation (RPA) or its equivalent,4 which as­
sumes rapid decay of correlations in the system. 

For a fairly long time, the RPA was an effective tool 
in achieving a transition between the deterministic and 
statistical descriptions. However, further investigations 
were unable to justify the RPA assumption in every case, 
and it has remained unclear as to when and how one 
applies statistical (irreversible) considerations instead of 
dynamical (reversible) ones. One example ofthe ambiguity 
between determinism and statistics is the Fermi-Pasta­
Ulam problem5 of the emergence of thermodynamic prop­
erties in a system of coupled nonlinear oscillators. Re­
searchers were unsuccessful in finding statistical relaxa­
tion to equilibrium when the number of oscillators becomes 
fairly large. It was at this point that the theory of chaotic 
dynamics could be applied to understand the appearance 
of randomness and, what is more important, the conditions 
needed for its appearance.6•7 

Mixing properties in phase space are crucial for the 
relaxation of systems to statistical equilibrium. The notion 
of mixing was introduced by J. Willard Gibbs, and it is 
viewed by physicists as a decay of correlations of related 
physical variables. The decay of phase correlations means 
a corresponding phase randomization. To reach a statis­
tical equilibrium in a finite time, it is important to have 
a finite time of mixing. Can chaotic dynamics provide this 
finite mixing time and thus provide the important condi­
tion of randomness that is essential for deriving any kind 
of kinetics? It is largely the answer to this question that 
is the subject of this article. 

The important role of quantum effects and the con­
nection between statistical laws and so-called quantum 
chaos deserves a special discussion and so are not consid­
ered here (see also reference 7). One provocative property 
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of quantum chaos that should be mentioned, however, is 
that despite the probabilistic character of quantum dy­
namics, quantum effects suppress the chaotic properties 
of classical dynamics. 

Strange kinetics 
Initially, it appeared that chaos theory could satisfactorily 
account for the conditions of applicability for randomness 
of phases. Chaos theory, however, could not explain how 
the averaging over random phases is performed to give 
physical observables. Fairly recent theoretical and numeri­
cal results have shifted the problem of the foundation of 
statistical laws from Zermelo's and Loschmidt's paradoxes 
to an even older one: the problem of the existence of 
Maxwell's demon, a device that, contrary to the second 
law of thermodynamics, can gather a significant part of 
a gas in one section of a chamber without performing any 
work.8 It would seem that the new phenomenon of chaos 
requires the abandonment of any assumption of random­
ness of some dynamical variables (like phases), because, 
under certain conditions, the dynamical equations are, in 
a manner of speaking, "playing dice by themselves." From 
observation, however, it appears that this "dice playing'' 
is rather strange, and the kinetics originating from chaotic 
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FIGURE 1. POINCARE RECURRENCES 
of a trajectory in phase space, with the 
trajectory (curved line) returning to a 
small domain A. A Poincare cycle is 
the time interval between two 
consecutive escapes (or entrances) from 
(or to) the domain A. (a) Simplest case 
of no features in phase space and 
uniform mixing. (b) Trajectory that 
passes through singular zone (quasi-trap), 
denoted by the squares within squares: 
the smaller the square, the longer the 
particle stays in the square. 

dynamics is strange as welP In a certain sense, chaos 
does not show complete randomness, and we now have to 
dig deeper to understand the origin of the statistical laws. 
Important discoveries in the search for the dynamical 
generation of randomness include dynamical traps and 
dynamical ways of cooling particles and systems. 

Contrary to early expectations, the states resulting 
from chaos are not completely random. Even at long times, 
chaotic systems include elements of order, and can be 
distinguished from completely random systems. "Normal," 
or complete, randomness has exponential decay of corre­
lations, distributions with all finite moments, and fast 
decay of fluctuations. The incomplete randomness of chaos, 
however, has a power-law decay of correlations, distribu­
tions with infinite moments, and long-lasting fluctuations. 
It is the incompleteness of randomness of chaotic dynamics 
that we describe in this article. We also discuss how this 
incompleteness influences the relaxation to statistical 
equilibrium. 

The Poincare recurrence theorem (PRT) states that 
in a dynamical system in which motion is confined to a 
finite region and phase-space volume is conserved, any 
trajectory returns back to any vicinity of its starting point 
(except for some trajectories of zero measure). Zermelo 
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FIGURE 2. FRACTAL POINCARE RECURRENCES, as shown in a stroboscopic presentation of trajectories of passive particles 
advected within a velocity field generated by a three-point-vortices system. Each point represents a particle position in phase space 
at a given time (scale units are arbitrary). All particles were initially in the outlined square; colors indicate how long a trajectory 
needs to return to the square. Stickiness of the island boundaries is shown by the high particle density and long return time in 
these regions. Both the full phase space (a) and magnification of one part (b) display the complicated (fractal) structure of the 
sticky boundary layer, as well as the complexity of the stickiness and recurrence time. 
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speculated that the PRT meant that the entropy of the 
system should follow the same property, returning close 
to its initial value, in contradiction to Boltzmann's state­
ment that entropy monotonically increases. 

Boltzmann's reply to Zermelo was to estimate the 
Poincare recurrence time, which, for a system of 1023 

particles, is much larger than the lifetime of the universe. 
Although this argument shifts the fundamental problem 
from quality to quantity, Boltzmann was the first to 
mention the importance of the mean recurrence time TR 

and to propose formulas for its estimation. He also made 
the important comment that the PRT does not say any­
thing about TR. As it t:urned out, this comment concerns 
one of the most significant properties for the under­
standing of dynamical systems with chaotic motion­
namely, the distribution of recurrence times. 

We can define the distribution function PrecC T) of Poin­
care cycles T as follows (see figure la). Consider a single 
trajectory in phase space that passes through a finite 
region A and exits. According to the PRT, the trajectory 
will reenter the region A again and again, after spending 
varying amounts of time outside the region. The interval 
between one exit from A and the next is the Poincare 
cycle time TR. The distribution function P re/T) gives the 

FIGURE 3. TYPICAL POINCARE RECURRENCE TIME distribution 
Prec(t). The distribution consists of two parts, with a Poissonian 
shape for fairly small time, and a power-law dependence for large 
time. This distribution was derived13 for the standard map,6 

which is an iterative procedure based on the periodically kicked 
rotor. For more complicated systems, the late-time power-law 
dependence might reflect multiple exponents. 

probability, as the volume A goes to zero, that a Poincare 
cycle will be completed in time T . Different features of 
Preb) make it useful for studying dynamical systems. Kac4 

studied Poincare cycles and proved an important theorem: 
Preb) exists, independent of the choice of domain A; and 
the mean recurrence time TR is finite, provided that the 
particle dynamics is area preserving and bounded in phase 
space, and that there exists a unique nonzero particle 
distribution function in the phase space. 

Kac's result created new difficulties for the study of 
chaotic dynamics in various systems, including those in 
which the randomness (chaos) is supposed to appear even 
for two degrees of freedom, those in which the existence 
of a positive measure of chaotic orbits has not yet been 
proved even for simple cases, and those in which nothing 
is known about the uniqueness of the distribution function. 

The distribution of Poincare cycles P rec(T) possesses 
the unique property that it characterizes the full phase 
space, including possible nonuniformities and singulari­
ties. We can say that obtaining the Poincare recurrence 
distribution is a way to visualize the chaotic dynamics. If, 
for example, there exists a singular domain A s (discussed 
below), then some of the cycles passing through A s carry 
information about that singular domain (see figure lb). 
Furthermore, it is possible to identify different types of 
singular domains in phase space. Some of the domains 
are called quasi-traps or dynamical traps, and they can 
be recognized by the distribution of recurrence cycles 
Prec(T). 

Flights and dynamical traps 
A typical phase space of Hamiltonian dynamics looks 
bizarre and resembles a topological zoo, consisting of 
domains of chaotic dynamics with such elements as the 
stochastic sea, stochastic layers, and stochastic webs, as 

Entropy paradoxes and chaotic dynamics 

Just after Ludwig Boltzmann's publication of his H-theorem 
on the monotonic increase in entropy until the system reaches 

Its equilibrium, a sharp discussion around his theory was initi­
ated by Ernst Zermelo and Josef Loschmidt, who formulated 
their objections in the form of paradoxes. 

Zermelo's paradox of recurrence: According to the Poin­
care recurrence theorem, any state of the system will be repeated 
within any prescribed accuracy infinitely many times. Zermelo 
stated that entropy should be repeated as well, in contradiction 
to the Boltzmann result. 

Loschmidt's Paradox of Reversibility: The equations of 
motion in mechanics are time reversible. Therefore, in addition 
to the process that leads to increasing the entropy, there should 
be a backward process that leads to decreasing the entropy. 

Two important features of statistical systems should be 
involved in resolving the paradoxes: the fantastically large number 
of particles in a system (about 1 CJ23) and the coarse-graining proce­
dure, as carefully analyzed by Paul and T atiana Ehrenfest, that 
unambiguously leads to the neglect of immensely small probabilities 
for recurrences and of reverse, entropy-decreasing processes. 

Chaotic dynamics provides a new concept of mixing in phase 
space and a new understanding of the two paradoxes. First, we 

note that the Poincare recurrence theorem has nothing to do 
with the appearance of statistical properties in a system. Recur­
rences exist in both quasiperiodic and stochastic motions. For a 
small number of particles (even two!) , chaotic dynamics leads to 
progressive increases in the complexity of the shape of an initial 
phase-space droplet; for the evolved droplet to return to its initial 
state would be an event of incredibly small probability. "Coarse 
graining" means that a state is defined up to a region of small 
volume 6.. After a while, the initial droplet of the phase space 
is well mixed over the finite phase space, so that the domain 6. 
consists of trajectories that could be initially at any available 
region of the same volume in the full phase space. Which 
trajectory should be taken to perform Loschmidt's backward 
dynamics? Any information about the initial states of trajectories 
disappears after the coarse graining (see more discussions in 
reference 6). 

In this article, we indicate that chaotic dynamics per se, despite 
its success in resolving the two paradoxes described here, has the 
possibility of long-lasting fluctuations (such as bursts, flights , and 
traps), which prevent the system from obeying the standard laws 
of thermodynamics for an arbitrarily long time, providing that 
no additional procedure or assumption has been made. 
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FIGURE 4. POINT PARTICLES, BOUNCING OFF BILLIARDS of various shapes, generate two-dimensional trajectories with long 
flights, stickiness, and singular zones. (a) Sinai (circular) billiard gives rise to a long bouncing trajectory. (b) The phase-space 
mapping of the trajectory in (a) displays scars (the four horizontal lines), which are domains of zero phase volume where 
trajectories cannot enter. (c) Cassini (oval) billiards in a periodic array generate trajectories in a system similar to the 
Lorentz gas. (d) The same trajectory as in (c), viewed at larger scale, displays long flights and trappings. (e) The phase-space 
mapping of the same trajectory displays both island structure and stickiness. (f) Magnification of an island in (e) reveals 
islands surrounding the island. The special parameter values a ~ 4.0309525, c ~ 3 for the shape of the Cassini oval result in 
satellite islands being generated at each successive magnification; with a proliferation number of 4-8-4-8 ... , denoting the 
formation of first 4, then 8, then 4 islands, and so on. 15 

well as islands filled by periodic and quasiperiodic orbits 
and smaller domains of chaos. The periodic and quasipe­
riodic orbits inside the islands are called, using a standard 
terminology, KAM (Kolmogorov-Arnold-Moser) invariant 
curves. These orbits are stable, and their presence, or the 
presence of islands of finite phase volume, makes the 
dynamics nonergodic. When chaos was first studied, it 
seemed that the existence of the islands was not very 
important for determining the origin and character of 
randomness. One reason was that the volume of the 
islands can be very small; another was that the phase 
space of islands can be excluded from consideration, after 
which the rest of the phase volume, called the stochastic 
sea, becomes ergodic. Subsequently, however, numerous 
investigations overtumed that optimistic hope, shifting 
the focus of interest from the domains of KAM orbits to 
the vicinity of boundaries of those domains, which have 
much smaller phase volumes. Crossing an island bound­
ary, we jump from a regular (periodic) orbit to the chaotic 
one that lies in the stochastic sea. The vicinity of the 
island boundary is terra incognita, and, despite significant 
mathematical effort, 10 it is still poorly understood how a 
trajectory shifts from regularity to the chaotic regime. 

Simulation shows that the vicinity of an island, called 
the boundary layer, is sticky. This means that a trajectory 
spends more time in the boundary layer than in a domain 
of the stochastic sea of the same phase volume but located 
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far from the island (figure 2). The island's boundary can 
be more or less sticky, depending on the control parameters 
of the system. There are also special zones located near 
the island's boundary where a trajectory can be trapped for 
a long finite time, and the size of these zones depends on 
the system parameters. The phenomenon of trapping be­
comes crucial for our understanding of Hamiltonian chaos, 
and it can play an important role in various applications. 
Below are few examples of the trapping phenomenon: 

a. Chaotic advection. This example describes a 
so-called Lagrangian (or passive) particle dynamics in a 
fluid flow v(r) 

r= v(r). (1) 

For incompressible flow with div v= 0, equation 1 corre­
sponds to Hamiltonian dynamics. In figure 2, we present 
a stroboscobic plot of a particle trajectory when the velocity 
field v is generated by three interacting point vortices.11 

This problem has numerous applications in geophysics, in 
which the chaotic motion of particles (tracers) in a given 
velocity field is known as Lagrangian turbulence. A tra­
jectory started in the outlined square of figure 2a returns 
back to the square repeatedly with different time intervals 
that are marked in colors. Long returns correspond to 
parts of trajectories that stick to the boundary of islands 
or subislands and so on. The existence of the sticky islands 
and their hierarchies results in anomalous diffusion in 



consider a two-dimensional problem of 
a point particle elastically scattering 
from a billiard ball enclosed in a box 
with perfectly reflecting walls. 1\vo 
kinds of billiards are presented in fig­
ure 4: the Sinai billiard with a circular 
scatterer, and the Cassini billiard with 
an oval scatterer given by the curve 
(r + y2)2- 2c2 (x2 - y2)- (a4 - c4) = 0. 

FIGURE 5. MAXWELL'S DEMON AT WORK in a system with two different scatterers in 
a box, separated by a wall with a small window in the center. The scatterers are 
billiards, with the left Cassini (oval) and the right Sinai (circular), but the phase 
volumes on each side are equal. We launch test particles to scatter off the billiards, 
and measure the distribution of time intervals that a particle spends in each half-box 
before escaping through the window. Surprisingly, for certain parameters, relaxation 
of the system does not occur, even for times immensely greater than the mixing 
time. Differences in the mean recurrence times can be interpreted as the difference 
in effective pressures in the left and right boxes. 

Their phase spaces differ. For the 
Sinai billiard, there are no islands but 
there are "scars"-nonreachable do­
mains of the phase space of zero meas­
ure (figure 4b). Any trajectory has 
parts that correspond to arbitrarily 
long bounces, or flights in the space 
(for example, the long trajectory on the 
right of figure 4a). 

The Cassini billiard (figure 4c) 
shows similar flights and trappings 
(figure 4d), but there are also flights 
due to the presence of islands in the 
phase space. One can find an example 
of parameters a, c for which there 
exists an infinite hierarchy of islands 

azimuthal angle 0 (an angle of rotation about some central 
point of the domain) 

(M 2) = ((0- (0))2) - t~" (2) 

with transport exponent j.L, which depends on a control 
parameter (geometry of the vortices) in a nonsmooth way. 
For the case in figure 2, j.L - 1.6 > 1, corresponding to 
superdiffusion. Different instances and mechanisms of 
superdiffusion have been observed in many physical situ­
ations, including passive particle motion in Beltrami-type 
flow, turbulent diffusion, charged particle dynamics, and 
advection in a rotational tank.l2 

A typical distribution of Poincare recurrences Prec(t) 
is shown in figure 3 for a well-known chaotic system, the 
standard map (corresponding to a periodically kicked ro­
tor). The distribution follows the Poissonian law up to 
some crossover time t*, after which it has a power-law 
behavior 

(3) 

There is a connection between y and j.L , but it depends on 
many factors. For the problem in figure 3, renormalization 
group theory was used to show that y = j.L + 2.13 

The power law (equation 3) occurs as a result of long 
trappings (or long flights, as in the next example) in the 
phase space. We can define a trapping time distribution 
lf;(t,tlfA) based on the amount of time that a trajectory spends 
in the domain tlfA on each recurrence. For any domain inside 
the trapping zone, 1/J(t) - P rec(t) when t » t*. 

More generally, trapping domains correspond to a type 
of singular zone in phase space. These zones can be 
characterized either by the distribution lf;(t,tlf A), which 
depends on the location of the zone tlfA, or by Prec(t), 
which does not depend on locations of different zones and 
which represents a cumulative characteristic of the phase 
space. In general, the set of recurrence cycles (T) cannot 
be characterized by only one exponent y, and it is neces­
sary to introduce some distribution of different values of 
y over the range of Pre/t).l3 The use of one value of y is 
a rough approximation good for some special values of 
control parameters and time windows. 

b. Billiards. Billiards is a very easily visualized 
example of the existence of trapping domains. Here, we 

with especially strong stickiness. Fig­
ure 4e shows the phase space for such 

parameters with an island in the center, surrounded by 
four other islands. Magnifying one of these islands, as in 
figure 4f, it can be seen that each surrounding island is 
surrounded by four others. Further magnification shows that 
each of the islands is surrounded by eight islands, each of 
which is surrounded by four islands, and so on. This infinite 
hierachy is labeled 4-8-4-8 . . . to denote the number of 
surrounding islands at each level of magnification. 

The recurrence time distributions for billiards exhibit 
the same kind of behavior as in figure 3: P rec(t) is Pois­
sonian in form below a certain crossover time, above which 
it transitions to a power-law tail with y"' 3 for the Sinai 
billiard14 and y "' 3.15 for the Cassini billiard. 

Dynamical traps vs. chaos 
The presence and variety of singular zones makes the 
dynamics of each chaotic system individual in some sense. 
The bad news of this loss of universality is offset by the 
good news that the dynamics in a singular zone determines 
the large-timescale behavior of systems. As an example, 
we can consider a hierarchical dynamical trap (figure 1b) 
consisting of an infinite set of nested domains with phase 
space volumes f 0 > f 1 > .... 15 A typical trajectory fills the 
phase space almost uniformly because of the mixing prop­
erty of chaos, except for a small part r 1 < r 0 where the 
trajectory stays time T1. Time T1 is longer than the time 
T0 that the trajectory spends outside off 1. We can increase 
the time of consideration and resolution to observe in 
greater detail the behavior of the trajectory in r h find a 
hierarchical similarity, and so on. We say that there exists 
a self-similar trap if 

f n =(Ar)nf0 , T n =(AT)nT 0 , (Ar <1,Ar>1), (4) 

with appropriate scaling parameters Ar and Ar . 
Actually, hierarchical traps have been observed in 

many different models13•15 for special control parameter 
values (the trapping conditions of systems strongly depend 
on the control parameter). Usually, the self-similarity 
condition is more complicated than equation 4, and there 
are different traps with different scaling parameters Ar , 
Ar distributed in some interval of values. Traps correspond 
to a very complicated spatial-temporal coherent structure 
in the phase-space dynamics, with strong and far-lasting 
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fluctuations that should be accounted for in the kinetic 
description of chaotic systems. Of course, one should not 
conclude that the simplified version described above can 
be typically observed in real dynamical systems with chaos 
since real systems have noise, lack exact self-similarity, 
have different degrees of freedom with different resonance 
properties, and so on. But before confronting these real­
world obstacles, we need to understand in a precise way 
what can or cannot be derived from first principles (say, 
from the Hamiltonian equation of motion). 

The presence of traps is more typical than the absence 
of traps for Hamiltonian dynamics. Traps can be studied 
in at least three ways. The first way is related to the 
understanding of chaotic dynamics: The mixing or corre­
lation decay property of chaos can be nonexponential if 
the timescale of consideration exceeds a characteristic time 
of trapping. For long timescale, a trap can be considered 
as a scene in which a process with fractal time occurs. 16 

The second way is to consider transport properties of 
particles or some macroscopic moments of distribution 
functions. In the presence of traps, the transport is anoma­
lous (non-Gaussian). In fact, the transport exponent J.L in 
equation 2 can sometimes be related to Ar and A.r. For 
example, for some special cases, 13 

J.L = l ln Ar I !ln A.r, (5) 

which represents a coupling between space and time 
scaling and the transport exponent. The third way is 
related to the foundation of statistical physics, and is 
discussed in the following sections. 

Loss of universality of chaotic dynamics 
The existence of different traps leads to a kind of non uni­
versality of distribution functions in chaotic dynamics that 
is contrary to what we are accustomed to in thermody­
namics with Gibbs distributions. In statistical mechanics, 
there typically exists the thermodynamic limit, which 
provides an equilibrium distribution, in analogy to the 
large number theorem. As was shown by Paul Levy, the 
Gaussian distribution is not the only one with the same 
form on both large and small scales17 (see the article on 
Levy flights by Joseph Klafter, Michael Schlesinger and 
Gert Zumofen, PHYSICS TODAY, February, 1996, page 33). 
The Levy distribution Pn(x), like the Gaussian, has the 
property that the sum of any number of functions p 1(x) 
has the same form as Pn(x). The Levy distribution includes 
a parameter 0 <a < 2 for which it is positive definite, and 
it is identical to the Gaussian distribution when a = 2. 
The parameter a is related to the fractal dimension of the 
space of random events, or flights.l6 

Processes induced by Hamiltonian chaotic dynamics 
are much more complicated than the random walk con­
sidered by Levy, and we can assume on the basis of 
simulations that there can be classes of universality rather 
than universality. The sources of nonuniversality will be 
the different nontrivial elements of phase-space structure 
(like islands of different orders of resonances, separatrices, 
and boundaries). Because of these structures, fluctuations 
from a stationary state can be arbitrarily large, and have 
a nonsmall probability of occurrence (compared to Gauss­
ian fluctuations, which decay exponentially). Moreover, 
moments of the fluctuations higher than second order 
diverge. An intrinsic property of chaotic dynamics is that 
for a given arbitrarily large dimensionless time t* (for 
example, 1010), we can find ranges of the system control 
parameters for which relaxation to an equilibrium or 
stationary state will not happen with a finite (nonexpo­
nentially small) probability. Of course, this property can 
be established now only for a system with few degrees of 
freedom-nothing is known about cases with a large 
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number of degrees of freedom. Nevertheless, we can see 
that chaotic dynamics can possess a property different 
from our regular understanding of randomness, a property 
we call persistence of nonequilibrium. An example is given 
in the next section. 

Maxwell's demon is summoned again 
Following the main principles of statistical physics, let us 
consider a one-particle trajectory for an extremely long 
time rather than considering many noninteracting parti­
cles for a much shorter time. We can make this replace­
ment because of the ergodic property of the dynamics. Put 
the particle into a system of two billiards in a box, one 
circular (Sinai) and one oval (Cassini), with the spaces for 
the billiards separated by a wall with a small window 
(figure 5), and take the sizes of billiards such that their 
phase volumes are equal (not an easy task, because of the 
infinite fractal sets of islands in the Cassini billiard part). 
Then define the residence time to be the time that a 
particle spends in either the Sinai or Cassini half-box, 
between entering and exiting the half-box. There are a 
few questions that cannot be answered trivially: What will 
be the distribution functions of particle residence time 
Ps(t) and Pc(t) in the Sinai and Cassini half-boxes? What 
are the moments of P8(t) and Pc(t) and, particularly, what 
are the mean residence times? In fact , the distributions 
P8(t) and Pc(t) are none other than the distributions of 
the Poincare recurrences to a domain near the window of 
contact from the right and left side, respectively. 

To increase the effect, we can adjust the parameters 
(a, c) of the Cassini oval to have the self-similar hierarchy 
of islands discussed earlier, and hence the strongest sticki­
ness (see figure 4), while balancing the phase volumes of 
the Sinai and Cassini parts . The results are astonishing: 
Only for times less than a crossover time t* are the 
distributions of Poincare recurrences for both sides iden­
tical and Poissonian; fort> t*, the distributions are visibly 
different. This difference persists for a computational time 
t max ~ 1010 cycles (figure 6), incomparably greater than the 
mixing time, which is of the order 10. This r esult can be 
viewed as a consequence of an action by an invisible 
Maxwell's demon whose role is played by a distributed 
specific topological structure of the phase space created 
by a special form of the Cassini ovaP5 (In our model, the 
demon is not localized as it was in Maxwell's original 
definition, but its essential role is the same, as a device 
embedded in the system that can strongly modifY the sys­
tem's thermodynamic properties). Long-lasting fluctuations 
prevent the relaxation in a finite time. As a result, the 
relative differences between the mean recurrence times Tc 
and Tg-the first moments of P8(t) and Pc(tkan be inter­
preted as the difference in effective pressures in the left and 
right boxes. The difference increases if we consider the 
higher-order moments, which are finite for a finite observa­
tion time but grow to infinity (!) because of the power-wise 
tails of the distributions Pc s(T). 

The above demonstration raises a new question: What 
kind of thermodynamics should describe systems, like 
billiards, with islands in their phase spaces? This question 
is relevant to typical Hamiltonian systems, especially if 
we take into account that a smoothing or softening of 
billiard borders generally creates an island structure in 
the phase space. The example with billiards can be ex­
tended to real systems like the advection with point 
vortices discussed above, in which two different sticky 
zones can play the role of the two chambers. Considering 
a contact between the zones for different values of the 
control parameter, we could expect to find no typical 
thermodynamic equilibrium for the gas of advected parti­
cles during an astronomical time. 
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When is chaos random? 
There is a kind of heresy in this question. Long ago, in 
an attempt to formalize our inability to predict the evo­
lution of some processes, the notion of randomness was 
introduced and random processes were mathematically 
invented. One could recall the axiomatic way in which 
randomness was introduced into our toolbox and justifY 
its usefulness by citing an incredible number of successful 
applications. Contemporary scientific achievements have 
expanded our possibilities in such a way that we can 
observe in reality a new phenomenon called chaotic dy­
namics. This phenomenon is generated (or described) by 
nonrandom, reversible, regular equations. At the same 
time, the same equations describe dynamics that, in some 
sense, lies between regularity and randomness. We need 
a realistic process that possesses properties of both regu­
larity and randomness in different proportions, so that 
the combination is not just a plain mixture of both kinds 
of properties. 'lbday's computational power and instrumental 
analysis make it possible to distinguish chaos from random­
ness, and even control and erase chaos or make predictions 
from it. At the same time, we must look for ways to describe 
a chaotic system complete with traps, flights, power-type 
distributions, infinite moments, and so on. 

To put it simply, in dealing with chaos, we should be 
prepared to accept a kind of thermodynamics without a 
monotonic evolution of the system, a stationary statistical 
distribution without a finite time of relaxation of fluctua­
tions, and kinetics with a partly (at least for finite time) 
predictable evolution. 

Our current knowledge leads to a view that random­
ness in its original, axiomatic definition is rather an 
approximation to chaotic orbits that are solutions of pure 
dynamical Newtonian, Maxwellian, or Einstein equations. 
This approximation, whether good or poor, does not guar­
antee the occurrence of the traditional statistical physics 
condition of a finite time relaxation to the equilibrium 
state and fast decay of fluctuations. We have to think 
again about the derivation of precise criteria for the 
occurrence of statistical laws to replace the so-called ther­
modynamic limit (N, V ~ =; NN = const), which is more 
a way to obscure the situation than to solve the problem 
of the foundation of statistical physics and the origin of 
statistical laws. 

Other implications 
Our discussion of the origin of statistical laws would be 
deficient without mentioning some direct applications of 
the incomplete randomness of chaos and the persistence 

FIGURE 6. FOOTPRINTS OF MAXWELL'S DEMON. The Poincare 
recurrence time distribution Prec(t) for the system depicted in 
figure 5 shows no evidence of relaxation for t > t* - 2 x 10\ 
where t' is the crossover time. When the two systems interact 
for many cycles, this plot shows the recurrence time 
distributions in the left (crosses) and right (circles) half-box. 
No relaxation to identical distributions is seen, even after the 
computational time 1.16 x 1010 for 37 trajectories.15 

of nonequilibrium. One such application is a stationary 
thermonuclear reactor, a device containing collisionless 
chaotic dynamics and strongly intermittent processes, es­
pecially in the plasma edge zone. Although the number of 
particles N is normally very large and no one has doubts 
that the volume V is also sufficiently large, the "thermo­
dynamics" of the operating reactor or its edge part is 
rather far from a usual meaning of this notion. Although 
little can be said about the thermodynamics of fusion, two 
other directions are quite rich in observations: the tran­
sition state to developed turbulence and the large fluctua­
tions oflocalization length seen in quantum chaos.18 These 
subjects deserve to be illuminated separately and in more 
detail. 

The author thanks M. Shlesinger, J. Lowenstein, and H. Weitzner 
for numerous helpful discussions, and M. Edelman and L. Kuznet­
sov for their help in preparing the figures . This work has been 
supported by the US Department of the Navy and the US Depart· 
ment of Energy. 
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