CHAOTIC DYNAMICS AND THE
ORIGIN OF STATISTICAL LAWS

he problem of the founda-

tion of statistical physics
emerged with the derivation
by Ludwig Boltzmann' of a
kinetic equation for a gas of
molecules that required
monotonic growth of entropy.
Boltzmann’s theory leads to
modern thermodynamics,
and, for example, to the im-
possibility of gas spontane-
ously gathering in one part of
a container in the absence of
external forces. This result,
known as the H-theorem, met
with strong contemporary op-
position, especially from
mathematician Ernst Zermelo.

The foundation of statistical laws, as understood by
the modern physics community, encompasses three prin-
cipal aspects: the origin of statistical laws from determi-
nistic dynamical equations, the conditions of applicability
of different statistical approximations, and criteria for the
transition from deterministic to statistical behavior. The
discovery of chaos in dynamical systems makes it neces-
sary to reconsider our views on each of these aspects, with
potentially significant consequences.

Zermelo’s objections? to Boltzmann’s H-theorem were
based on a nonrigorous application of a rigorous result of
Henri Poincaré, the so-called Poincaré recurrence theorem.
Another criticism came from Boltzmann’s teacher, Josef
Loschmidt, who pointed out that, due to the reversibility
of dynamical equations, we can reverse all trajectories of
a system and thereby return all system characteristics to
their initial values. In particular, this reversal should
occur with the entropy, which would then decrease on time
reversal, in contradiction to Boltzmann’s results.

The drastic difference between statistical behavior,
based on probabilistic laws, and pure deterministic behav-
ior, based on Hamiltonian dynamics, leads us to the
following fundamental questions: Is the statistical descrip-
tion purely a technical (or instrumental) way to describe
the dynamics, or a reflection of naturally existing random
irregularities? Can we, starting from Hamiltonian dynam-
ics (as Boltzmann actually did), explain the appearance
of thermodynamics (statistical physics, H-theorem, en-
tropy growth, and so on)? Going further, we may ask: Is
the fact that it is impossible for molecules of gas uniformly
distributed in a chamber to gather in full, or almost in
full, in a part of the chamber without the help of external
forces a real and absolute property of nature, or is it a
result of the convenient use of some theoretical approxi-
mation methods?

After Boltzmann’s death in 1906, Paul and Tatiana
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Chaotic dynamics in real systems does
not provide finite relaxation time to
equilibrium or fast decay of fluctuations,
and chaotic systems are not completely
random in the sense originally postulated
for statistical systems. These properties
may require rethinking some of the
fundamental assumptions of
thermodynamics.

George M. Zaslavsky

Ehrenfest published a very
detailed  article® on
Boltzmann’s statistical ap-
proach to dynamical systems
with a large number of de-
grees of freedom. They ana-
lyzed the main objections to
Boltzmann’s theory, known
as Zermelo’s and Losch-
midt’s paradoxes. (See the
discussion in the box on
page 41). An advanced de-
scription of the paradoxes
and responses to them can
be found in the works of
Mark Kac.? In fact, Zer-
melo’s and Loschmidt’s para-
doxes apply not only to Boltzmann’s theory, but also to
any statistical theory whose results include monotonic
entropy growth. Generalizing and broadening our problem,
we may now ask: How can irreversible kinetic equations
that appear to adequately describe physical reality follow
from reversible dynamical equations? A formal resolution
of the problem, following Boltzmann’s idea, is based on a
physically reasonable assumption known as the random
phase approximation (RPA) or its equivalent,* which as-
sumes rapid decay of correlations in the system.

For a fairly long time, the RPA was an effective tool
in achieving a transition between the deterministic and
statistical descriptions. However, further investigations
were unable to justify the RPA assumption in every case,
and it has remained unclear as to when and how one
applies statistical (irreversible) considerations instead of
dynamical (reversible) ones. One example of the ambiguity
between determinism and statistics is the Fermi-Pasta-
Ulam problem® of the emergence of thermodynamic prop-
erties in a system of coupled nonlinear oscillators. Re-
searchers were unsuccessful in finding statistical relaxa-
tion to equilibrium when the number of oscillators becomes
fairly large. It was at this point that the theory of chaotic
dynamics could be applied to understand the appearance
of randomness and, what is more important, the conditions
needed for its appearance.®’

Mixing properties in phase space are crucial for the
relaxation of systems to statistical equilibrium. The notion
of mixing was introduced by J. Willard Gibbs, and it is
viewed by physicists as a decay of correlations of related
physical variables. The decay of phase correlations means
a corresponding phase randomization. To reach a statis-
tical equilibrium in a finite time, it is important to have
a finite time of mixing. Can chaotic dynamics provide this
finite mixing time and thus provide the important condi-
tion of randomness that is essential for deriving any kind
of kinetics? It is largely the answer to this question that
is the subject of this article.

The important role of quantum effects and the con-
nection between statistical laws and so-called quantum
chaos deserves a special discussion and so are not consid-
ered here (see also reference 7). One provocative property
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FIGURE 1. POINCARE RECURRENCES
of a trajectory in phase space, with the
{ trajectory (curved line) returning to a

Cjb

N small domain A. A Poincaré cycle is
7 the time interval between two
consecutive escapes (or entrances) from
< 9 (or to) the domain A. (a) Simplest case
of no features in phase space and
uniform mixing. (b) Trajectory that
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of quantum chaos that should be mentioned, however, is
that despite the probabilistic character of quantum dy-
namics, quantum effects suppress the chaotic properties
of classical dynamics.

Strange kinetics

Initially, it appeared that chaos theory could satisfactorily
account for the conditions of applicability for randomness
of phases. Chaos theory, however, could not explain how
the averaging over random phases is performed to give
physical observables. Fairly recent theoretical and numeri-
cal results have shifted the problem of the foundation of
statistical laws from Zermelo’s and Loschmidt’s paradoxes
to an even older one: the problem of the existence of
Maxwell’s demon, a device that, contrary to the second
law of thermodynamics, can gather a significant part of
a gas in one section of a chamber without performing any
work.® It would seem that the new phenomenon of chaos
requires the abandonment of any assumption of random-
ness of some dynamical variables (like phases), because,
under certain conditions, the dynamical equations are, in
a manner of speaking, “playing dice by themselves.” From
observation, however, it appears that this “dice playing”
is rather strange, and the kinetics originating from chaotic
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passes through singular zone (quasi-trap),
denoted by the squares within squares:
the smaller the square, the longer the
particle stays in the square.

dynamics is strange as well.® In a certain sense, chaos
does not show complete randomness, and we now have to
dig deeper to understand the origin of the statistical laws.
Important discoveries in the search for the dynamical
generation of randomness include dynamical traps and
dynamical ways of cooling particles and systems.

Contrary to early expectations, the states resulting
from chaos are not completely random. Even at long times,
chaotic systems include elements of order, and can be
distinguished from completely random systems. “Normal,”
or complete, randomness has exponential decay of corre-
lations, distributions with all finite moments, and fast
decay of fluctuations. The incomplete randomness of chaos,
however, has a power-law decay of correlations, distribu-
tions with infinite moments, and long-lasting fluctuations.
It is the incompleteness of randomness of chaotic dynamics
that we describe in this article. We also discuss how this
incompleteness influences the relaxation to statistical
equilibrium. .

The Poincaré recurrence theorem (PRT) states that
in a dynamical system in which motion is confined to a
finite region and phase-space volume is conserved, any
trajectory returns back to any vicinity of its starting point
(except for some trajectories of zero measure). Zermelo
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FIGURE 2. FRACTAL POINCARE RECURRENCES, as shown in a stroboscopic presentation of trajectories of passive particles
advected within a velocity field generated by a three-point-vortices system. Each point represents a particle position in phase space
at a given time (scale units are arbitrary). All particles were initially in the outlined square; colors indicate how long a trajectory
needs to return to the square. Stickiness of the island boundaries is shown by the high particle density and long return time in
these regions. Both the full phase space (a) and magnification of one part (b) display the complicated (fractal) structure of the
sticky boundary layer, as well as the complexity of the stickiness and recurrence time.
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speculated that the PRT meant that the entropy of the
system should follow the same property, returning close
to its initial value, in contradiction to Boltzmann’s state-
ment that entropy monotonically increases.

Boltzmann’s reply to Zermelo was to estimate the
Poincaré recurrence time, which, for a system of 10%
particles, is much larger than the lifetime of the universe.
Although this argument shifts the fundamental problem
from quality to quantity, Boltzmann was the first to
mention the importance of the mean recurrence time 75
and to propose formulas for its estimation. He also made
the important comment that the PRT does not say any-
thing about 7. As it turned out, this comment concerns
one of the most significant properties for the under-
standing of dynamical systems with chaotic motion—
namely, the distribution of recurrence times.

We can define the distribution function P, (7) of Poin-
caré cycles 7 as follows (see figure 1a). Consider a single
trajectory in phase space that passes through a finite
region A and exits. According to the PRT, the trajectory
will reenter the region A again and again, after spending
varying amounts of time outside the region. The interval
between one exit from A and the next is the Poincaré
cycle time 7. The distribution function P, (7) gives the

FIGURE 3. TYPICAL POINCARE RECURRENCE TIME distribution
P...(t). The distribution consists of two parts, with a Poissonian
shape for fairly small time, and a power-law dependence for large
time. This distribution was derived" for the standard map,*
which is an iterative procedure based on the periodically kicked
rotor. For more complicated systems, the late-time power-law
dependence might reflect multiple exponents.

probability, as the volume A goes to zero, that a Poincaré
cycle will be completed in time 7. Different features of
P,..(r) make it useful for studying dynamical systems. Kac*
studied Poincaré cycles and proved an important theorem:
P..(7) exists, independent of the choice of domain A; and
the mean recurrence time 7y is finite, provided that the
particle dynamics is area preserving and bounded in phase
space, and that there exists a unique nonzero particle
distribution function in the phase space.

Kac’s result created new difficulties for the study of
chaotic dynamics in various systems, including those in
which the randomness (chaos) is supposed to appear even
for two degrees of freedom, those in which the existence
of a positive measure of chaotic orbits has not yet been
proved even for simple cases, and those in which nothing
is known about the uniqueness of the distribution function.

The distribution of Poincaré cycles P, (1) possesses
the unique property that it characterizes the full phase
space, including possible nonuniformities and singulari-
ties. We can say that obtaining the Poincaré recurrence
distribution is a way to visualize the chaotic dynamics. If,
for example, there exists a singular domain A, (discussed
below), then some of the cycles passing through A, carry
information about that singular domain (see figure 1b).
Furthermore, it is possible to identify different types of
singular domains in phase space. Some of the domains
are called quasi-traps or dynamical traps, and they can
be recognized by the distribution of recurrence cycles
Prodm).

Flights and dynamical traps

A typical phase space of Hamiltonian dynamics looks
bizarre and resembles a topological zoo, consisting of
domains of chaotic dynamics with such elements as the
stochastic sea, stochastic layers, and stochastic webs, as

Entropy paradoxes and chaotic dynamics

ust after Ludwig Boltzmann’s publication of his H-theorem

on the monotonic increase in entropy until the system reaches
its equilibrium, a sharp discussion around his theory was initi-
ated by Ernst Zermelo and Josef Loschmidt, who formulated
their objections in the form of paradoxes.

Zermelo’s paradox of recurrence: According to the Poin-
caré recurrence theorem, any state of the system will be repeated
within any prescribed accuracy infinitely many times. Zermelo
stated that entropy should be repeated as well, in contradiction
to the Boltzmann result.

Loschmidt’s Paradox of Reversibility: The equations of
motion in mechanics are time reversible. Therefore, in addition
to the process that leads to increasing the entropy, there should
be a backward process that leads to decreasing the entropy.

Two important features of statistical systems should be
involved in resolving the paradoxes: the fantastically large number
of particles in a system (about 10%) and the coarse-graining proce-
dure, as carefully analyzed by Paul and Tatiana Ehrenfest, that
unambiguously leads to the neglect of immensely small probabilities
for recurrences and of reverse, entropy-decreasing processes.

Chaotic dynamics provides a new concept of mixing in phase
space and a new understanding of the two paradoxes. First, we

note that the Poincaré recurrence theorem has nothing to do
with the appearance of statistical properties in a system. Recur-
rences exist in both quasiperiodic and stochastic motions. For a
small number of particles (even two!), chaotic dynamics leads to
progressive increases in the complexity of the shape of an initial
phase-space droplet; for the evolved droplet to return to its initial
state would be an event of incredibly small probability. “Coarse
graining” means that a state is defined up to a region of small
volume A. After a while, the initial droplet of the phase space
is well mixed over the finite phase space, so that the domain A
consists of trajectories that could be initially at any available
region of the same volume in the full phase space. Which
trajectory should be taken to perform Loschmidt’s backward
dynamics? Any information about the initial states of trajectories
disappears after the coarse graining (see more discussions in
reference 6).

In this article, we indicate that chaotic dynamics per se, despite
its success in resolving the two paradoxes described here, has the
possibility of long-lasting fluctuations (such as bursts, flights, and
traps), which prevent the system from obeying the standard laws
of thermodynamics for an arbitrarily long time, providing that
no additional procedure or assumption has been made.
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FIGURE 4. POINT PARTICLES, BOUNCING OFF BILLIARDS of various shapes, generate two-dimensional trajectories with long
flights, stickiness, and singular zones. (a) Sinai (circular) billiard gives rise to a long bouncing trajectory. (b) The phase-space
mapping of the trajectory in (a) displays scars (the four horizontal lines), which are domains of zero phase volume where
trajectories cannot enter. () Cassini (oval) billiards in a periodic array generate trajectories in a system similar to the
Lorentz gas. (d) The same trajectory as in (c), viewed at larger scale, displays long flights and trappings. (e) The phase-space
mapping of the same trajectory displays both island structure and stickiness. (f) Magnification of an island in (e) reveals
islands surrounding the island. The special parameter values 2 = 4.0309525, ¢ = 3 for the shape of the Cassini oval result in
satellite islands being generated at each successive magnification; with a proliferation number of 4-8-4-8. . . , denoting the

formation of first 4, then 8, then 4 islands, and so on."

well as islands filled by periodic and quasiperiodic orbits
and smaller domains of chaos. The periodic and quasipe-
riodic orbits inside the islands are called, using a standard
terminology, KAM (Kolmogorov-Arnold-Moser) invariant
curves. These orbits are stable, and their presence, or the
presence of islands of finite phase volume, makes the
dynamics nonergodic. When chaos was first studied, it
seemed that the existence of the islands was not very
important for determining the origin and character of
randomness. One reason was that the volume of the
islands can be very small; another was that the phase
space of islands can be excluded from consideration, after
which the rest of the phase volume, called the stochastic
sea, becomes ergodic. Subsequently, however, numerous
investigations overturned that optimistic hope, shifting
the focus of interest from the domains of KAM orbits to
the vicinity of boundaries of those domains, which have
much smaller phase volumes. Crossing an island bound-
ary, we jump from a regular (periodic) orbit to the chaotic
one that lies in the stochastic sea. The vicinity of the
island boundary is terra incognita, and, despite significant
mathematical effort,'* it is still poorly understood how a
trajectory shifts from regularity to the chaotic regime.
Simulation shows that the vicinity of an island, called
the boundary layer, is sticky. This means that a trajectory
spends more time in the boundary layer than in a domain
of the stochastic sea of the same phase volume but located
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far from the island (figure 2). The island’s boundary can
be more or less sticky, depending on the control parameters
of the system. There are also special zones located near
the island’s boundary where a trajectory can be trapped for
a long finite time, and the size of these zones depends on
the system parameters. The phenomenon of trapping be-
comes crucial for our understanding of Hamiltonian chaos,
and it can play an important role in various applications.
Below are few examples of the trapping phenomenon:

a. Chaotic advection. This example describes a
so-called Lagrangian (or passive) particle dynamics in a
fluid flow v(r)

r=v(r). (1

For incompressible flow with div v=0, equation 1 corre-
sponds to Hamiltonian dynamics. In figure 2, we present
a stroboscobic plot of a particle trajectory when the velocity
field v is generated by three interacting point vortices.!
This problem has numerous applications in geophysics, in
which the chaotic motion of particles (tracers) in a given
velocity field is known as Lagrangian turbulence. A tra-
jectory started in the outlined square of figure 2a returns
back to the square repeatedly with different time intervals
that are marked in colors. Long returns correspond to
parts of trajectories that stick to the boundary of islands
or subislands and so on. The existence of the sticky islands
and their hierarchies results in anomalous diffusion in
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consider a two-dimensional problem of
a point particle elastically scattering
from a billiard ball enclosed in a box
with perfectly reflecting walls. Two
kinds of billiards are presented in fig-
ure 4: the Sinai billiard with a circular
scatterer, and the Cassini billiard with
an oval scatterer given by the curve
?+y22—2c? (2 —y%) —(a*— cH=0.
Their phase spaces differ. For the
Sinai billiard, there are no islands but
there are “scars”—nonreachable do-
mains of the phase space of zero meas-
ure (figure 4b). Any trajectory has
parts that correspond to arbitrarily
long bounces, or flights in the space

a box, separated by a wall with a small window in the center. The scatterers are
billiards, with the left Cassini (oval) and the right Sinai (circular), but the phase
volumes on each side are equal. We launch test particles to scatter off the billiards,
and measure the distribution of time intervals that a particle spends in each half-box
before escaping through the window. Surprisingly, for certain parameters, relaxation
of the system does not occur, even for times immensely greater than the mixing
time. Differences in the mean recurrence times can be interpreted as the difference

in effective pressures in the left and right boxes.

(for example, the long trajectory on the
right of figure 4a).

The Cassini billiard (figure 4c)
shows similar flights and trappings
(figure 4d), but there are also flights
due to the presence of islands in the
phase space. One can find an example
of parameters a, ¢ for which there
exists an infinite hierarchy of islands

azimuthal angle 6 (an angle of rotation about some central
point of the domain)

(A6%) =((6 - (0)?) ~ t* 2

with transport exponent u, which depends on a control
parameter (geometry of the vortices) in a nonsmooth way.
For the case in figure 2, u ~ 1.6 > 1, corresponding to
superdiffusion. Different instances and mechanisms of
superdiffusion have been observed in many physical situ-
ations, including passive particle motion in Beltrami-type
flow, turbulent diffusion, charged particle dynamics, and
advection in a rotational tank.!?

A typical distribution of Poincaré recurrences P,.(t)
is shown in figure 3 for a well-known chaotic system, the
standard map (corresponding to a periodically kicked ro-
tor). The distribution follows the Poissonian law up to
some crossover time ¢, after which it has a power-law
behavior

Prec(t) ~t7. (3)

There is a connection between y and u, but it depends on
many factors. For the problem in figure 3, renormalization
group theory was used to show that y = u + 2.13

The power law (equation 3) occurs as a result of long
trappings (or long flights, as in the next example) in the
phase space. We can define a trapping time distribution
Y(t,ATl’y) based on the amount of time that a trajectory spends
in the domain AT, on each recurrence. For any domain inside
the trapping zone, ¥(¢) ~ P,(t) when ¢ > ¢

More generally, trapping domains correspond to a type
of singular zone in phase space. These zones can be
characterized either by the distribution (t,Al'y), which
depends on the location of the zone ATy, or by P..(t),
which does not depend on locations of different zones and
which represents a cumulative characteristic of the phase
space. In general, the set of recurrence cycles {r} cannot
be characterized by only one exponent v, and it is neces-
sary to introduce some distribution of different values of
7y over the range of P, (¢).1® The use of one value of vy is
a rough approximation good for some special values of
control parameters and time windows.

b. Billiards. Billiards is a very easily visualized
example of the existence of trapping domains. Here, we

with especially strong stickiness. Fig-
ure 4e shows the phase space for such
parameters with an island in the center, surrounded by
four other islands. Magnifying one of these islands, as in
figure 4f, it can be seen that each surrounding island is
surrounded by four others. Further magnification shows that
each of the islands is surrounded by eight islands, each of
which is surrounded by four islands, and so on. This infinite
hierachy is labeled 4-8-4-8... to denote the number of
surrounding islands at each level of magnification.

The recurrence time distributions for billiards exhibit
the same kind of behavior as in figure 3: P,.(¢) is Pois-
sonian in form below a certain crossover time, above which
it transitions to a power-law tail with y = 3 for the Sinai
billiard* and y = 3.15 for the Cassini billiard.

Dynamical traps vs. chaos

The presence and variety of singular zones makes the
dynamics of each chaotic system individual in some sense.
The bad news of this loss of universality is offset by the
good news that the dynamics in a singular zone determines
the large-timescale behavior of systems. As an example,
we can consider a hierarchical dynamical trap (figure 1b)
consisting of an infinite set of nested domains with phase
space volumes I'y > T’y > . .. .15 A typical trajectory fills the
phase space almost uniformly because of the mixing prop-
erty of chaos, except for a small part I';y < T, where the
trajectory stays time 7. Time T} is longer than the time
T, that the trajectory spends outside of I'y. We can increase
the time of consideration and resolution to observe in
greater detail the behavior of the trajectory in I'y, find a
hierarchical similarity, and so on. We say that there exists
a self-similar trap if

L=y, To=0)"Ty, Ar<1,Ap>1), 4)

with appropriate scaling parameters Ar and Ay.

Actually, hierarchical traps have been observed in
many different models'3!® for special control parameter
values (the trapping conditions of systems strongly depend
on the control parameter). Usually, the self-similarity
condition is more complicated than equation 4, and there
are different traps with different scaling parameters A,
Ar distributed in some interval of values. Traps correspond
to a very complicated spatial-temporal coherent structure
in the phase-space dynamics, with strong and far-lasting
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fluctuations that should be accounted for in the kinetic
description of chaotic systems. Of course, one should not
conclude that the simplified version described above can
be typically observed in real dynamical systems with chaos
since real systems have noise, lack exact self-similarity,
have different degrees of freedom with different resonance
properties, and so on. But before confronting these real-
world obstacles, we need to understand in a precise way
what can or cannot be derived from first principles (say,
from the Hamiltonian equation of motion).

The presence of traps is more typical than the absence
of traps for Hamiltonian dynamics. Traps can be studied
in at least three ways. The first way is related to the
understanding of chaotic dynamics: The mixing or corre-
lation decay property of chaos can be nonexponential if
the timescale of consideration exceeds a characteristic time
of trapping. For long timescale, a trap can be considered
as a scene in which a process with fractal time occurs.'
The second way is to consider transport properties of
particles or some macroscopic moments of distribution
functions. In the presence of traps, the transport is anoma-
lous (non-Gaussian). In fact, the transport exponent u in
equation 2 can sometimes be related to Ar and Ay For
example, for some special cases,3

w=1lnAr|/1nAp, (5)

which represents a coupling between space and time
scaling and the transport exponent. The third way is
related to the foundation of statistical physics, and is
discussed in the following sections.

Loss of universality of chaotic dynamics

The existence of different traps leads to a kind of nonuni-
versality of distribution functions in chaotic dynamics that
is contrary to what we are accustomed to in thermody-
namics with Gibbs distributions. In statistical mechanics,
there typically exists the thermodynamic limit, which
provides an equilibrium distribution, in analogy to the
large number theorem. As was shown by Paul Lévy, the
Gaussian distribution is not the only one with the same
form on both large and small scales'” (see the article on
Lévy flights by Joseph Klafter, Michael Schlesinger and
Gert Zumofen, PHYsICS ToDAY, February, 1996, page 33).
The Lévy distribution p,(x), like the Gaussian, has the
property that the sum of any number of functions p;(x)
has the same form as p,(x). The Lévy distribution includes
a parameter 0 < a < 2 for which it is positive definite, and
it is identical to the Gaussian distribution when o =2.
The parameter « is related to the fractal dimension of the
space of random events, or flights.'6

Processes induced by Hamiltonian chaotic dynamics
are much more complicated than the random walk con-
sidered by Lévy, and we can assume on the basis of
simulations that there can be classes of universality rather
than universality. The sources of nonuniversality will be
the different nontrivial elements of phase-space structure
(like islands of different orders of resonances, separatrices,
and boundaries). Because of these structures, fluctuations
from a stationary state can be arbitrarily large, and have
a nonsmall probability of occurrence (compared to Gauss-
ian fluctuations, which decay exponentially). Moreover,
moments of the fluctuations higher than second order
diverge. An intrinsic property of chaotic dynamics is that
for a given arbitrarily large dimensionless time t* (for
example, 10'%), we can find ranges of the system control
parameters for which relaxation to an equilibrium or
stationary state will not happen with a finite (nonexpo-
nentially small) probability. Of course, this property can
be established now only for a system with few degrees of
freedom—nothing is known about cases with a large
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number of degrees of freedom. Nevertheless, we can see
that chaotic dynamics can possess a property different
from our regular understanding of randomness, a property
we call persistence of nonequilibrium. An example is given
in the next section.

Maxwell’s demon is summoned again

Following the main principles of statistical physics, let us
consider a one-particle trajectory for an extremely long
time rather than considering many noninteracting parti-
cles for a much shorter time. We can make this replace-
ment because of the ergodic property of the dynamics. Put
the particle into a system of two billiards in a box, one
circular (Sinai) and one oval (Cassini), with the spaces for
the billiards separated by a wall with a small window
(figure 5), and take the sizes of billiards such that their
phase volumes are equal (not an easy task, because of the
infinite fractal sets of islands in the Cassini billiard part).
Then define the residence time to be the time that a
particle spends in either the Sinai or Cassini half-box,
between entering and exiting the half-box. There are a
few questions that cannot be answered trivially: What will
be the distribution functions of particle residence time
Pg(t) and P(t) in the Sinai and Cassini half-boxes? What
are the moments of Pg(t) and P(¢) and, particularly, what
are the mean residence times? In fact, the distributions
Pg(t) and Py(¢) are none other than the distributions of
the Poincaré recurrences to a domain near the window of
contact from the right and left side, respectively.

To increase the effect, we can adjust the parameters
(a, ¢) of the Cassini oval to have the self-similar hierarchy
of islands discussed earlier, and hence the strongest sticki-
ness (see figure 4), while balancing the phase volumes of
the Sinai and Cassini parts. The results are astonishing:
Only for times less than a crossover time ¢ are the
distributions of Poincaré recurrences for both sides iden-
tical and Poissonian; for ¢ > ¢, the distributions are visibly
different. This difference persists for a computational time
tmax ~ 1010 cycles (figure 6), incomparably greater than the
mixing time, which is of the order 10. This result can be
viewed as a consequence of an action by an invisible
Maxwell’s demon whose role is played by a distributed
specific topological structure of the phase space created
by a special form of the Cassini oval.’® (In our model, the
demon is not localized as it was in Maxwell’s original
definition, but its essential role is the same, as a device
embedded in the system that can strongly modify the sys-
tem’s thermodynamic properties). Long-lasting fluctuations
prevent the relaxation in a finite time. As a result, the
relative differences between the mean recurrence times 7.
and 7g—the first moments of Pg(¢) and P(f)—can be inter-
preted as the difference in effective pressures in the left and
right boxes. The difference increases if we consider the
higher-order moments, which are finite for a finite observa-
tion time but grow to infinity (!) because of the power-wise
tails of the distributions P (7).

The above demonstration raises a new question: What
kind of thermodynamics should describe systems, like
billiards, with islands in their phase spaces? This question
is relevant to typical Hamiltonian systems, especially if
we take into account that a smoothing or softening of
billiard borders generally creates an island structure in
the phase space. The example with billiards can be ex-
tended to real systems like the advection with point
vortices discussed above, in which two different sticky
zones can play the role of the two chambers. Considering
a contact between the zones for different values of the
control parameter, we could expect to find no typical
thermodynamic equilibrium for the gas of advected parti-
cles during an astronomical time.
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When is chaos random?

There is a kind of heresy in this question. Long ago, in
an attempt to formalize our inability to predict the evo-
lution of some processes, the notion of randomness was
introduced and random processes were mathematically
invented. One could recall the axiomatic way in which
randomness was introduced into our toolbox and justify
its usefulness by citing an incredible number of successful
applications. Contemporary scientific achievements have
expanded our possibilities in such a way that we can
observe in reality a new phenomenon called chaotic dy-
namics. This phenomenon is generated (or described) by
nonrandom, reversible, regular equations. At the same
time, the same equations describe dynamics that, in some
sense, lies between regularity and randomness. We need
a realistic process that possesses properties of both regu-
larity and randomness in different proportions, so that
the combination is not just a plain mixture of both kinds
of properties. Today’s computational power and instrumental
analysis make it possible to distinguish chaos from random-
ness, and even control and erase chaos or make predictions
from it. At the same time, we must look for ways to describe
a chaotic system complete with traps, flights, power-type
distributions, infinite moments, and so on.

To put it simply, in dealing with chaos, we should be
prepared to accept a kind of thermodynamics without a
monotonic evolution of the system, a stationary statistical
distribution without a finite time of relaxation of fluctua-
tions, and kinetics with a partly (at least for finite time)
predictable evolution.

Our current knowledge leads to a view that random-
ness in its original, axiomatic definition is rather an
approximation to chaotic orbits that are solutions of pure
dynamical Newtonian, Maxwellian, or Einstein equations.
This approximation, whether good or poor, does not guar-
antee the occurrence of the traditional statistical physics
condition of a finite time relaxation to the equilibrium
state and fast decay of fluctuations. We have to think
again about the derivation of precise criteria for the
occurrence of statistical laws to replace the so-called ther-
modynamic limit (N, V — o; N/V = const), which is more
a way to obscure the situation than to solve the problem
of the foundation of statistical physics and the origin of
statistical laws.

Other implications

Our discussion of the origin of statistical laws would be
deficient without mentioning some direct applications of
the incomplete randomness of chaos and the persistence

FIGURE 6. FOOTPRINTS OF MAXWELL’S DEMON. The Poincaré
recurrence time distribution Pp(f) for the system depicted in
figure 5 shows no evidence of relaxation for t > ¢ ~ 2 x 10%
where ¢* is the crossover time. When the two systems interact
for many cycles, this plot shows the recurrence time
distributions in the left (crosses) and right (circles) half-box.
No relaxation to identical distributions is seen, even after the
computational time 1.16 x 10' for 37 trajectories.'

of nonequilibrium. One such application is a stationary
thermonuclear reactor, a device containing collisionless
chaotic dynamics and strongly intermittent processes, es-
pecially in the plasma edge zone. Although the number of
particles N is normally very large and no one has doubts
that the volume V is also sufficiently large, the “thermo-
dynamics” of the operating reactor or its edge part is
rather far from a usual meaning of this notion. Although
little can be said about the thermodynamics of fusion, two
other directions are quite rich in observations: the tran-
sition state to developed turbulence and the large fluctua-
tions of localization length seen in quantum chaos.!® These
subjects deserve to be illuminated separately and in more
detail.

The author thanks M. Shlesinger, J. Lowenstein, and H. Weitzner
for numerous helpful discussions, and M. Edelman and L. Kuznet-
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supported by the US Department of the Navy and the US Depart-
ment of Energy.
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