
CONSISTENT HISTORIES AND 
QUANTUM MEASUREMENTS 

The traditional Copenhagen orthodoxy saddles quantum theory with 
embarrassments like Schrodinger's cat and the claim that properties don't 

exist until you measure them. The consistent-histories approach seeks a 
sensible remedy. 

Robert B. Griffiths and Roland Omnes 

Students of quantum theory always find it a very difficult 
subject. Th begin with, it involves unfamiliar mathe­

matics: partial differential equations, functional analysis, 
and probability theory. But the main difficulty, both for 
students and their teachers, is relating the mathematical 
structure of the theory to physical reality. What is it in 
the laboratory that corresponds to a wavefunction, or to 
an angular momentum operator? Or, to use the pictur­
esque term introduced by John Bell/ what are the ''be­
abies" (pronounced BE-uh-bulls) of quantum theory- that 
is to say, the physical referents of the mathematical terms? 

In most textbooks, the mathematical structures of 
quantum theory are connected to physical reality through 
the concept of measurement. Quantum theory allows us 
to predict the results of measurements-for example, the 
probability that this counter rather than that one will 
detect a scattered particle. That the concept of measure­
ment played an important role in the early development 
of quantum theory is evident from Niels Bohr's account 
of his discussions with Albert Einstein at the 1927 and 
1930 Solvay conferences.2 And it soon became part of the 
official "Copenhagen" interpretation of the theory. 

But what may well have been necessary for the 
understanding of quantum theory at the outset has not 
turned out to provide a satisfactory permanent foundation 
for the subject. Later generations of physicists who have 
tried to make a measurement concept a fundamental 
axiom for the theory have discovered that this raises more 
problems than it solves. The basic difficulty is that any 
real apparatus in the laboratory is composed of particles 
that are presumably subject to the same quantum laws 
as the phenomenon being measured. So, what is special 
about the measuring process? Is not the entire universe 
quantum mechanical? 

When quantum theory is applied to astrophysics and 
cosmology, the whole idea of using measurements to in­
terpret its predictions seems ludicrous. Thus, many physi­
cists nowadays regard what has come to be called "the 
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measurement problem" as one of the most intractable 
difficulties standing in the way of understanding quantum 
mechanics. 

Two measurement problems 
There are actually two measurement problems that con­
ventional textbook quantum theory cannot deal with. The 
first is the appearance, as a result of the measurement 
process, of macroscopic quantum superposition states such 
as Erwin Schrodinger's hapless cat. The second problem 
is to show that the results of a measurement are suitably 
correlated with the properties the measured system had 
before the measurement took place-in other words, that 
the measurement has actually measured something. 

The macroscopic-superposition problem is so difficult 
that it has provoked serious proposals to modifY quantum 
theory, despite the fact that all experiments carried out 
to date have confirmed the theory's validity. Such propos­
als have either added new, "hidden" variables to supple­
ment the usual Hilbert space of quantum wavefunctions, 
or they have modified the Schrodinger equation so as to 
make macroscopic superposition states disappear. (For a 
discussion of two such proposals, see the two-part article 
by Sheldon Goldstein in PHYSICS TODAY, March 1998, page 
42, and April 1998, page 38.) But even such radical 
changes do not resolve the second measurement problem. 

Both problems can, however, be resolved without 
adding hidden variables to the Hilbert space and without 
modifYing the Schrodinger equation. In a series of papers 
starting in 1984, an approach to quantum interpretation 
known as consistent histories, or decoherent histories, has 
been introduced by us and by Murray Gell-Mann and 
James Hartle.3 The central idea is that the rules that 
govern how quantum beables relate to each other, and 
how they can be combined to form sensible descriptions 
of the world, are rather different from what one finds in 
classical physics. 

In the consistent-histories approach, the concept of 
measurement is not the basis for interpreting quantum 
theory. Instead, measurements can be analyzed, together 
with other quantum phenomena, in terms of physical 
processes. And there is no need to invoke mysterious 
long-range influences and similar ghostly effects that are 
sometimes claimed to be present in the quantum world.4 
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Ascribing some physical significance to 
the peculiar macroscopic-quantum-su­
perposition state IS) in (3) poses the 
first measurement problem in our 
gedanken experiment. The difficulty is 
that IS ) consists of a linear superposi-
tion of two wavefunctions representing 
situations that are visibly, macroscopi­
cally, quite distinct: The pointer on C 
is vertical and that on D is horizontal 
for IC*)ID), whereas for IC)ID*) the D 
pointer is vertical and the C pointer is 
horizontal. In Schri:idinger 's famously 
paradoxical example, the two distinct 
situations were a live and a dead cat. 
A great deal of effort has gone into 
trying to interpret IS ) as meaning that 
either one detector or the other has 
been triggered, but the results have 
not been very satisfactory.5 

fiGURE 1. A SIMPLE GEDANKEN EXPERIMENT helps illustrate the authors' approach 
to macroscopic quantum superposition states like the hapless Schri:idinger cat. A 
photon initially in channel a passes through the beam splitter B and is eventually 
detected by one of the two detectors C and D. The struck detector undergoes an 
obvious macroscopic change of state, not unlike a poisoned cat. 

The first measurement problem is 
an almost inevitable consequence of 
supposing that, in quantum theory, a 
solution of Schri:idinger's equation rep­
resents a deterministic time evolution 
of a physical system, in the same way 
as does a solution of Hamilton's equa­
tions in classical mechanics. That was 
undoubtedly Schri:idinger's point of 
view when he introduced his equation. 
The probabilistic interpretation now 
universally accepted among quantum 
physicists was introduced shortly 
thereafter by Max Born. Since then, Quantum histories 

The two measurement problems, and the consistent-his­
tories approach to solving them, can be understood by 
referring to the simple gedanken experiment shown in 
figure 1. A photon (or neutron, or some other particle; it 
makes no difference) enters a beam splitter in the a 
channel and emerges in the c and d channels in the 
coherent superposition: 

Ia) ~is) = (ic) + ld))/-Y2. (1) 

Here Ia ), ic), and ld) are wavepackets in the input and 
output channels, and is) is what results from Ia ) by unitary 
time evolution (that is, by solving the appropriate 
Schri:idinger equation) as the photon passes through the 
beam splitter. 

The photon will later be detected by one of two 
detectors, C and D. To describe this process in quantum 
terms, we assume that IC) is the initial quantum state of 
C, and that the process of its detecting a photon in a 
wavepacket ic) is described by 

ic)IC) ~ IC' ), (2) 
where IC') is the triggered state of the detector after it 
has detected the photon. Once again, the arrow indicates 
the unitary time evolution produced by solving Schri:idin­
ger's equation. It is helpful to think of IC) and IC*) as 
physically quite distinct: Imagine that a macroscopically 
large pointer, initially horizontal in IC), is moved to a 
vertical position in the state IC*) when the photon has 
been detected. 

By putting together the processes (1), (2), and the 
counterpart of (2) that describes the detection of a photon 
in the d channel by detector D, one finds that the unitary 
time development of the entire system shown in figure 1 
is of the form 

ia )IC)ID) ~IS) = (IC' )ID) + IC)ID'))/-Y2. (3) 

chance and determinism have maintained a somewhat 
uncomfortable coexistence within quantum theory, with 
many scientists continuing to share Einstein's view that 
resorting to probabilities is a sign that something is 
incomplete. 

A stochastic theory 
By contrast, the consistent-histories viewpoint is that 
quantum mechanics is fundamentally a stochastic or prob­
abilistic theory, as far as time development is concerned, 
and that it is not necessary to introduce some determi­
nistic underpinning of this r andomness by means of hid­
den variables. The basic task of quantum theory is to use 
the time-dependent Schri:idinger equation, not to generate 
deterministic orbits, but instead to assign probabilities to 
quantum histories-sequences of quantum events at a 
succession of times-in much the same way that classical 
stochastic theories assign probabilities to sequences of coin 
tosses or to Brownian motion. This perspective does not 
exclude deterministic histories, but those are thought of 
as arising in special cases in which the probability of a 
particular sequence of events is equal to 1. 

For the gedanken experiment in figure 1, the consis­
tent-histories solution to the first measurement problem 
consists of noting that a perfectly good description of what 
is happening is provided by assuming that the initial state 
is followed at a later time by one of two mutually exclusive 
possibilities: IC' )ID) or IC)ID*). They are related to each 
other in much the same way as heads and tails in a coin 
toss. That is to say, the system is described by one (and, 
in a particular experimental run, only one) of the two 
quantum histories: 

ia)IC)ID) ~ IC*)ID) or ia )IC)ID) ~ IC)ID' ), (4) 

where the arrow no longer denotes unitary time develop­
ment. Quantum theory assigns to each history a prob-
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ability of%. (Of course, to check this prediction, one would 
have to repeat the experiment using several photons in 
succession, each time resetting the detectors.) 

The troublesome macroscopic quantum superposition 
state IS) of (3) appears nowhere in (4). Indeed, as we 
discuss below, the rules of consistent-histories quantum 
theory mean that IS) cannot occur in the same quantum 
description as the final detector states employed in (4). 
Therefore, the first measurement problem has been solved 
(or, at least it has disappeared) if one uses the stochastic 
histories in (4) in place of the deterministic history in (3). 

The fundamental beables of consistent histories quan­
tum theory-that is, the items to which the theory can 
ascribe physical reality, or at least a reliable logical mean­
ing-are consistent quantum histories: sequences of suc­
cessive quantum events that satisfy a consistency condi­
tion about which more is said below. A quantum event 
can be any wavefunction-that is to say, any nonzero 
element of the quantum Hilbert space. The two histories 
in (4), as well as the single history in (3), are examples 
of consistent quantum histories. They are thus acceptable 
quantum descriptions of what goes on in the system shown 
in figure 1. 

At this point, the reader may be skeptical of the claim 
that the first measurement problem has been solved. We 
have simply replaced (3), with its troublesome macroscopic 
quantum superposition state, by the more benign pair of 
histories in (4). But as long as (3) is an acceptable his­
tory-as is certainly the case from the consistent-histories 
perspective-how can we claim that (4) is the correct 
quantum description rather than (3)? Or is it possible that 
both (3) and (4) apply simultaneously to the same system? 
Before attempting an answer, let us take a slight detour 
to introduce the concept of quantum incompatibility, which 
plays a central role in the consistent-histories approach 
to quantum theory. 

Quantum incompatibility 
The simplest quantum system is the spin degree of free­
dom of a spin-% particle, described by a two-dimensional 
Hilbert space. Every nonzero (spinor) wavefunction in this 
space corresponds to a component of spin angular momen­
tum in a particular direction taking the value % in units 
of h. Thus the quantum beables of this system, in the 
consistent-histories approach as well as in standard quan­
tum mechanics, are of the form S w = %, where w is a unit 
vector pointing in some direction in three-dimensional 
space, and S w is the component of spin angular momentum 
in that direction. (Actually, S w =%corresponds to a whole 
collection of wavefunctions obtained from each other 
through multiplication by a complex number, and thus to 
a one-dimensional subspace of the Hilbert space.) 

The nonclassical nature of quantum theory begins to 
appear when one asks about the relationship of these 
beables, or quantum states, for two different directions w. 
If the directions are opposite, for example +z and -z, the 
states S z = % and S _2 = % are two mutually exclusive 
possibilities, one of which is the negation of the other. 
Thus they are related in the same way as the results of 
tossing a coin: if heads (S2 = %) is false, tails (S 2 = - %) is 
true, and vice versa. This means, in particular, that the 
proposition "Sz = % and S 2 = -%" can never be true. It is 
always false. 

That this is a reasonable way of understanding the 
relationship between S 2 = % and S z = - % is confirmed by 
the fact that if a spin-1/ 2 particle is sent through a Stem­
Gerlach apparatus with its magnetic field gradient in the 
z direction, the result will be either S 2 = % or -%, as shown 
by the position at which the particle emerges. Precisely 
the same applies to any other component of spin angular 
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momentum. Thus, for example, Sx = % is the negation of 
Sx = -%. (As an amusing aside, we note that when Otto 
Stem proposed in 1921 to demonstrate the quantization 
of angular-momentum orientation, Born assured him that 
he would see nothing, because such spatial quantization 
was only a mathematical fiction. 6) 

But what is the relationship of beables that corre­
spond to components of spin angular momentum for di­
rections in space that are not opposite to each other? How, 
for example, is S x = % related to S 2 = %? In consistent-his­
tories quantum theory, "Sx = % and S z = %" is considered 
a meaningless expression, because it cannot be associated 
with any genuine quantum beable, that is, with any 
element of the quantum Hilbert space. Note that every 
non-zero element in that space corresponds to S w = % for 
some direction w, so there is nothing left over that .could 
describe a situation in which two components of the spin 
angular momentum both have the value %. 

Putting it another way, there seems to be no sensible 
way to identifY the assertion "S x = % and S z = 1/z," with 
Sw =% for some particular direction w. (For a more de­
tailed discussion, see section 4A of reference 7 .) That 
agrees, by the way, with what all students learn in intro­
ductory quantum mechanics: There is no possible way to 
measure S x and S 2 simultaneously for a spin-Yz particle. 
From the consistent-histories perspective, this impossibil­
ity is no surprise: What is meaningless does not exist, and 
what does not exist cannot be measured. 

Meaningless or simply false? 
It is very important to distinguish a meaningless state­
ment from a statement that is always false . "S z = % and 
S 2 = - 1/ 2" is always false, because S z = % and S z = - % are 
mutually exclusive alternatives. The negation of a state­
ment that is always false is a statement which is always 
true. By contrast, the negation of a meaningless statement 
is equally meaningless. The negation of the meaningless 
assertion "Sx = % and S 2 = %," following the ordinary rules 
of logic, is "S x = - Y2 or S z = - 1/ 2." In consistent-histories 
quantum theory, this latter assertion is just as meaning­
less as the former. How, after all, would one go about 
testing it by means of an experiment? 

This spin-% example is the simplest illustration of 
quantum incompatibility: Two quantum beables A and B, 
each of which can be imagined to be part of some correct 
description of a quantum system, have the property that 
they cannot both be present simultaneously in a mean­
ingful quantum description. That is, phrases like "A and 
B" or "A orB," or any other attempt to combine or compare 
A and B, cannot refer to a real physical state of affairs. 
Many instances of quantum incompatibility come about 
because of the mathematical structure of Hilbert space 
and the way in which quantum physicists understand the 
negation of propositions. Others are consequences of vio­
lations of consistency conditions for histories. In either 
case, the concept of quantum incompatibility plays a 
central role in consistent histories. Failure to appreciate 
this has, unfortunately, led to some misunderstanding of 
consistent-histories ideas. 

Now let us return to the discussion of the histories 
in (3) and (4). The two histories in (4) are mutually 
exclusive; if one occurs, the other cannot. Think of them 
as analogous to S 2 = Y2 and S 2 = - % for a spin-Y2 particle. 
On the other hand, each of the histories in (4) is incom­
patible, in the quantum sense, with the history in (3), 
which one can think of as analogous to Sx = %. Indeed, 
the relationship between the state IS) in (3) and the states 
IC)ID *) and IC' )ID) in (4) is formally the same as that 
between the state S x = % and the states S 2 = Y2 and 
S z = - Y2. Consequently, the question of whether (3) occurs 



rather than, or at the same time as, the histories in (4) 
makes no sense. 

It may be helpful to push the spin analogy one step 
further. Imagine a classical spinning object subjected to 
random torques of a sort that leave Lx> the x component 
of angular momentum, unchanged while randomly alter­
ing the other two components, LY and Lz. In such a case, 
a classical history that describes only Lx will be determi­
nistic; it will have a probability of 1. L., on the other hand, 
can be described by a collection of several mutually ex­
clusive histories, each having a nonzero probability. 

Of course, classical histories of this kind can always 
be combined into a single history, whereas the determi­
nistic quantum history in (3), corresponding to the Lx 
history in this analogy, cannot be combined with the 
stochastic histories in (4), the analogs of the Lz histories. 
Nevertheless, the analogy has some value in that it sug­
gests that (3) and (4) might be regarded intuitively as 
describing alternative aspects of the same physical situ­
ation. Although all classical analogies for quantum sys­
tems break down eventually, this one is less misleading 
than trying to think of (3) and the set of histories in (4) 
as mutually exclusive possibilities. It helps prevent us 
from undertaking a vain search for some "law of nature" 
that would tell us that (4) rather than (3) is the correct 
quantum description. 

The second measurement problem 
Particle physicists are always designing and building their 
experiments under the assumption that a measurement 
carried out in the real world can accurately reflect the 
state of affairs that existed just before the measurement. 
From a string of sparks or bubbles, for example, they infer 

the prior passage of an ionizing particle through 
the chamber. Extrapolating the tracks of several 
ionizing particles backward, they locate the point 
where the collision that produced the particles 
took place. But according to many textbook ac­
counts of the quantum measuring process, 
retrodictions that use experimental results to in­
fer what the particle was doing before this kind 
of measurement was made are not possible. 
Should we conclude, then, that experimenters 
don't take enough courses in quantum theory? 

The consistent-histories analysis shows that 
the experimenters do, in fact , know what they are 
doing, and that such retrodictions are perfectly 
compatible with quantum theory. It also provides 
general rules for carrying out retrodictions safely, 
without producing contradictions or paradoxes. 
The consistent-histories approach even offers 
some insight into why the textbooks have often 
regarded retrodiction as dangerous. 

The basic idea can be illustrated once again 
by reference to figure 1. Suppose the photon has 
been detected by detector C. In which channel 
was it just prior to detection: channel c or d? The 
very nature of the question tells us that (3) is of 

no help; we must resort to the histories in (4). But even 
they are inadequate, because they tell us nothing about 
what the photon is doing at intermediate times. To address 
that question, we must consider the following refinements 
of the histories in (4): 

la)IC)ID) -7 lc)IC)ID > -7 IC')ID), 

la)IC)ID ) -7 ldiC)ID ) -7 )IC)ID '), (5) 

in which intermediate events have been added to describe 
the photon after it passes through the beam splitter, but 
before it is detected. The consistent-histories rules assign 
a probability of % to each of these histories. That means 
it is impossible, given the initial state, to predict whether 
the photon will leave the beam splitter through channel 
c or d. But if the final detector state is IC')ID ), meaning 
that C has detected the photon, then the first history in 
(5), not the second, is the one that actually occurred. So, 
at the intermediate time, the photon was in state lc) rather 
than ld) . That is to say, it was in the c channel. 

Why has this rather obvious way of solving the second 
measurement problem been overlooked for so long? Prob­
ably because a quantum physicist who grew up with the 
standard textbooks will describe the situation in figure 1 
by means of a pair of histories 

la)IC)ID) -7 ls)IC)ID) -7 IC*)ID), 

la)IC)ID ) -7 ls)IC)ID ) -7 IC)ID'), (6) 

in which, at the intermediate time, the photon is in the 
superposition state Is) defined in (1). He will wait until 
the measurement takes place and then "collapse" the 
wavefunction for reasons that he may not understand very 
well. But at least they make more sense to him than does 
the macroscopic quantum superposition state IS) of (3). 
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Consistency Conditions: An Application 

The consistency conditions as formulated in reference 9 
are obtained by associating with each of the histories in 

a panicular family a "weight" operator on the H ilben space, 
and then requiring that the weight operators for mutually 
exclusive histories be onhogonal to each other-the operator 
inner product being generated by the trace. This somewhat 
abstract prescription is best understood by working through 
simple examples, such as the one in section 6C of reference 
8. Here, we give an application of the consistency conditions 
to a situation of some physical interest. 

Consider the Mach-Zehnder interferometer illustrated in 
figure 2. A wavepacket of light passing through the first beam 
splitter 81 is reflected by a pair of mirrors, C and D, onto a 
second beam splitter 82 preceding the output channels e and 
f The effect of 8 1 on the wavepacket Ia) of a photon in the 
initial a channel at time t1 is to produce, at a slightly later 
time tb the same kind of superposition Is) of wavepackets 
lc) and ld) in the c and d arms of the interferometer as we had 
in equation (1). The effect of the second beam splitter is given 
by 

lc) ~ (le) + if)) I -fi 
I d) ~ He) + if)) I -fi, (7) 

where le) and if) are wavepackets in the output channels at 
t3• The optical paths have been so arranged that the two 
le) components in (7) appear with opposite phases. 

Therefore, when we combine (1) and (7), we see that the 
photon entering at a must emerge in channel f, corresponding 
to the three-time history 

Ia) ~Is) -t if), (8) 

which satisfies the consistency conditions simply because it is 

From the standpoint of consistent histories, such a 
physicist is , in effect, employing the histories in (6), which 
are perfectly good quantum beables, as part of a stochastic 
quantum description. H owever, if the photon is in th e 
superposition state Is) at the in termediate time, qu antum 
incompatibility implies that it makes no sense to ask 
whether it is in the c channel or the d channel. That 
question can be asked only in the context of the histories 
in (5). 

The existence of a quantum description employing th e 
set of histories in (6), in which the question of the rela­
tionship between the measurement result and th e location 
of the photon before the measurement is meaningless, does 
not invalidate th e conclusion reached by means of t he 
histories in (5), which provide a definite answer to that 
question. It is a quite general feature of quantum reason­
ing that various questions of physical interest can be 
addressed only by constructing an appropriate quantum 
description. That is quite unlike classical physics, where 
a single description, su ch as specifying a precise point in 
the phase space of a mechanical system, suffices to answer 
all meaningful questions. 

Consistency conditions 
The beables in consistent-histories quantu m theory are a 
collection of mutually exclusive histories to which prob­
abilities are assigned by the dynamical laws of quantum 
mechanics (Schrodinger's equation). If the histories involve 
just two times, as in (4), these probabilities are given by 
the usual Born rule- namely, the absolute square of th e 
inner product of the time-evolved initial state and th e 
final state in question. Histories involving three or more 
times, as in (5), require a generalization of the Born rule 
and additional consistency conditions to assure that the 
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a solution of Schr&linger's equation. 
On the other hand, the pair of mutually exclusive histories 

Ia) ~ lc) -t if) and Ia) ~ ld) -t if), (9) 
in which the pan icle passes through either the c or d arm at 
the intermediate time t2 and then emerges in the I channel, 
are not consistent, because the corresponding weight operators 
are not onhogonal. The reader may check this by the methods 
of reference 9, but it will require some work. 

Consequently, it makes no sense to say that the panicle 
passes through the c or the d arm and then emerges in the I 
channel. H owever, the two histories 

Ia) ~ lc) -t (le) + 1/)) I -fi 
Ia) ~ ld) -t He>+ 1/)) I -fi (10) 

are consistent, because here the weight operators are onhogo­
nal. Again we leave the proof as an exercise. Thus it makes 
perfectly good sense to say that the photon passes through 
the c arm and emerges in a certain coherent superposition of 
states in the two output channels, or through the d arm to 
emerge in a different superposition. 

This Mach-Zehnder example is analogous to the canonical 
double-slit experiment, if one regards passing through the cor 
d arm as analogous to passing through the upper or lower slit, 
and emerging in e or I as analogous to the pan icle arriving at a 
point of minimum or maximum intensity in the double-slit 
interference zone. 

FIGURE 2. A MACH-ZEHNDER INTERFEROMETER, in which 
the first beam splitter B1 transforms an initial photon 
wavepacket Ia) into a superposition of lc) and ld) wavepack­
ets in the two arms. The second beam splitter turns each of 
these wavepackets into a superposition of wavepackets le) 
and if) in the output channels. (See equations (7) .) 

probabilities make physical sense. 
Not all collections of mut ually exclusive histories 

satisfy the mathematical conditions of consistency. The 
consistent-histories approach ascribes physical meaning 
only to histories that satisfy the consistency conditions. 
Other cases are regarded as meaningless; that is to say, 
they are rather like trying to simultaneously ascribe 
values for Sx and Sz to a spin-% particle. (See the box 
above for additional remarks on consistency conditions.) 

Consistency conditions are needed for a consistent 



discussion of the quantum double-slit experiment,8 in 
which a wavepacket approaches the slits at time t 1, it 
passes through one or the other slit just before t 2, and it 
arrives at t3 at some point in the interference zone, where 
waves from the two slits interfere with each other. It tums 
out that histories in which the particle passes through a 
particular slit and then arrives at a particular point in 
the interference zone do not satisfy the consistency con­
ditions, and thus do not constitute acceptable quantum 
beables. That will come as no surprise to generations of 
students who have been taught that asking which slit the 
particle passes through is not a sensible question. In this 
respect, the consistency conditions support the physicist's 
usual intuition at the same time as they provide a precise 
mathematical formulation applicable in other situations 
where intuitive arguments are not sufficient for precise 
analysis. 

On the other hand, if there are detectors just behind 
the two slits, one's physical intuition says that it should 
be sensible to say which slit the particle passes through. 
Such intuition is used all the time in designing experi­
ments in which collimators are placed in front of detectors. 
In that case, the relevant histories, which are the analogs 
of (5), turn out to be consistent. Furthermore, even if there 
are no detectors behind the slits, there are consistent 
histories in which the particle passes through a particular 
slit and then arrives in a spread-out wavepacket in the 
interference zone, rather than at a particular point. (See 
the box for more details in an analogous situation involv­
ing a Mach-Zehnder interferometer.) 

The physical consequences of consistency conditions 
are still being explored, and there is not yet complete 
agreement even on their mathematical form. However, the 
different formulations one finds in references 9, 10, and 
11 do not seem to make any significant difference in most 
physical applications . 

Classical limit 
Because classical mechanics provides an excellent descrip­
tion of the motion of macroscopic objects in the everyday 
world, one would expect that quantum theory, in an 
appropriate limit, would yield the laws of classical physics 
to very good approximation. This conclusion is supported 
by Paul Ehrenfest's argument, which one finds in elemen­
tary textbooks, to the effect that average values of certain 
quantum observables satisfy equations similar to those of 
classical mechanics . But that is not a satisfactory solution 
to the problem of the classical limit, for two reasons: One 
wants to know how individual systems behave, not just 
the ensemble to which such an average applies . Further­
more, such an average, in the usual textbook under­
standing of quantum theory, refers to the results of meas­
urements, and is not valid when measurements are not 
made. 

In the consistent-histories approach, the classical 
limit can be studied by using appropriate subspaces of the 
quantum Hilbert space as a "coarse graining," analogous 
to dividing up phase space into nonoverlapping cells in 
classical statistical mechanics. This coarse graining can 
then be used to construct quantum histories. It is neces­
sary to show that the resulting family of histories is 
consistent, so that the probabilities assigned by quantum 
dynamics make good quantum mechanical sense. Finally, 
one needs to show that the resulting quantum dynamics 
is well approximated by appropriate classical equations. 

Demonstrating all this in complete detail is a difficult 
problem. But so is the analogous problem of finding the 
behavior of a large number of particles govemed by clas­
sical mechanics. Indeed, the problem of showing that a 

system of classical particles will exhibit thermodynamic 
irreversibility, a typical macroscopic phenomenon, has not 
yet been settled to everyone's satisfaction, despite a con­
tinuing effort that goes back to Ludwig Boltzmann's work 
a century ago. (See the articles by Joel Lebowitz in PHYSICS 
TODAY, September 1993, page 32, and by George Zaslavsky 
in this issue, page 39.) 

Nonetheless, calculations carried out by one of us, 11,12 

and by Gell-Mann and Hartle,10 indicate that, given a 
suitable consistent family, classical physics does indeed 
emerge from quantum theory. Of course the classical 
equations are only approximate. They must be supple­
mented by including a certain amount of random noise, 
as one would expect from the fact that quantum dynamics 
is a stochastic process. In many circumstances, this quan­
tum noise will not have much influence, but it can be 
amplified in systems that exhibit (classical) chaotic behav­
ior. Even so, because the classical dynamics of such sys­
tems is noisy for all practical purposes, even if it is 
deterministic in principle, they are not likely to exhibit 
distinctive quantum effects. 

The consistency of a family of histories for a macro­
scopic system is often ensured by quantum decoherence, 
an effect closely related to thermodynamic irreversibility. 
(See the article by Wojciech Zurek in PHYSICS TODAY, 
October 1991, page 36. ) Demonstrating that quantum 
systems actually exhibit irreversible behavior in the ther­
modynamic sense, on the other hand, is not trivial. There 
are conceptual and computational difficulties similar to 
those that arise when one considers a classical system of 
many particles. Nonetheless, there seems at present to be 
no difficulty, in principle, that prevents us from under­
standing macroscopic phenomena in quantum terms, in­
cluding what happens in a real measurement apparatus. 
Thus, by interpreting quantum mechanics in a manner in 
which measurement plays no fundamental role, we can 
use quantum theory to understand how an actual meas­
uring apparatus functions. 

We are grateful to Thdd Brun, Sheldon Goldstein, James Hartle, 
and Wojciech Zurek for comments on the manuscript. One of us 
(Griffiths) acknowledges financial support from the National Sci­
ence Foundation through grant PHY 9602084. 
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