CONSISTENT HISTORIES AND
QUANTUM MEASUREMENTS

The traditional Copenhagen orthodoxy saddles quantum theory with
embarrassments like Schrédinger’s cat and the claim that properties don’t
exist until you measure them. The consistent-histories approach seeks a
sensible remedy.

Robert B. Griffiths and Roland Omnés

tudents of quantum theory always find it a very difficult

subject. To begin with, it involves unfamiliar mathe-
matics: partial differential equations, functional analysis,
and probability theory. But the main difficulty, both for
students and their teachers, is relating the mathematical
structure of the theory to physical reality. What is it in
the laboratory that corresponds to a wavefunction, or to
an angular momentum operator? Or, to use the pictur-
esque term introduced by John Bell,! what are the “be-
ables” (pronounced BE-uh-bulls) of quantum theory—that
is to say, the physical referents of the mathematical terms?

In most textbooks, the mathematical structures of
quantum theory are connected to physical reality through
the concept of measurement. Quantum theory allows us
to predict the results of measurements—for example, the
probability that this counter rather than that one will
detect a scattered particle. That the concept of measure-
ment played an important role in the early development
of quantum theory is evident from Niels Bohr’s account
of his discussions with Albert Einstein at the 1927 and
1930 Solvay conferences.? And it soon became part of the
official “Copenhagen” interpretation of the theory.

But what may well have been necessary for the
understanding of quantum theory at the outset has not
turned out to provide a satisfactory permanent foundation
for the subject. Later generations of physicists who have
tried to make a measurement concept a fundamental
axiom for the theory have discovered that this raises more
problems than it solves. The basic difficulty is that any
real apparatus in the laboratory is composed of particles
that are presumably subject to the same quantum laws
as the phenomenon being measured. So, what is special
about the measuring process? Is not the entire universe
quantum mechanical?

When quantum theory is applied to astrophysics and
cosmology, the whole idea of using measurements to in-
terpret its predictions seems ludicrous. Thus, many physi-
cists nowadays regard what has come to be called “the
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measurement problem” as one of the most intractable
difficulties standing in the way of understanding quantum
mechanics.

Two measurement problems

There are actually two measurement problems that con-
ventional textbook quantum theory cannot deal with. The
first is the appearance, as a result of the measurement
process, of macroscopic quantum superposition states such
as Erwin Schrédinger’s hapless cat. The second problem
is to show that the results of a measurement are suitably
correlated with the properties the measured system had
before the measurement took place—in other words, that
the measurement has actually measured something.

The macroscopic-superposition problem is so difficult
that it has provoked serious proposals to modify quantum
theory, despite the fact that all experiments carried out
to date have confirmed the theory’s validity. Such propos-
als have either added new, “hidden” variables to supple-
ment the usual Hilbert space of quantum wavefunctions,
or they have modified the Schrodinger equation so as to
make macroscopic superposition states disappear. (For a
discussion of two such proposals, see the two-part article
by Sheldon Goldstein in PHYSICS TODAY, March 1998, page
42, and April 1998, page 38.) But even such radical
changes do not resolve the second measurement problem.

Both problems can, however, be resolved without
adding hidden variables to the Hilbert space and without
modifying the Schrodinger equation. In a series of papers
starting in 1984, an approach to quantum interpretation
known as consistent histories, or decoherent histories, has
been introduced by us and by Murray Gell-Mann and
James Hartle.® The central idea is that the rules that
govern how quantum beables relate to each other, and
how they can be combined to form sensible descriptions
of the world, are rather different from what one finds in
classical physics.

In the consistent-histories approach, the concept of
measurement is not the basis for interpreting quantum
theory. Instead, measurements can be analyzed, together
with other quantum phenomena, in terms of physical
processes. And there is no need to invoke mysterious
long-range influences and similar ghostly effects that are
sometimes claimed to be present in the quantum world.*
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FIGURE 1. A SIMPLE GEDANKEN EXPERIMENT helps illustrate the authors’ approach
to macroscopic quantum superposition states like the hapless Schrédinger cat. A
photon initially in channel 4 passes through the beam splitter B and is eventually
detected by one of the two detectors C and D. The struck detector undergoes an

obvious macroscopic change of state, not unlike a poisoned cat.

Ascribing some physical significance to
the peculiar macroscopic-quantum-su-
perposition state |S) in (3) poses the
first measurement problem in our
gedanken experiment. The difficulty is
that |S) consists of a linear superposi-
tion of two wavefunctions representing
situations that are visibly, macroscopi-
cally, quite distinct: The pointer on C
is vertical and that on D is horizontal
for |C*)|D), whereas for |C)|D*) the D
pointer is vertical and the C pointer is
horizontal. In Schriodinger’s famously
paradoxical example, the two distinct
situations were a live and a dead cat.
A great deal of effort has gone into
trying to interpret |S) as meaning that
either one detector or the other has
been triggered, but the results have
not been very satisfactory.?

The first measurement problem is
an almost inevitable consequence of
supposing that, in quantum theory, a
solution of Schriodinger’s equation rep-
D resents a deterministic time evolution
of a physical system, in the same way
as does a solution of Hamilton’s equa-
tions in classical mechanics. That was
undoubtedly Schrédinger’s point of
view when he introduced his equation.
The probabilistic interpretation now
universally accepted among quantum

Quantum histories

The two measurement problems, and the consistent-his-
tories approach to solving them, can be understood by
referring to the simple gedanken experiment shown in
figure 1. A photon (or neutron, or some other particle; it
makes no difference) enters a beam splitter in the a
channel and emerges in the ¢ and d channels in the
coherent superposition:

la) = Is) = (le) + ld)) /2. 1

Here |a), |c), and |d) are wavepackets in the input and
output channels, and [s) is what results from |a) by unitary
time evolution (that is, by solving the appropriate
Schrodinger equation) as the photon passes through the
beam splitter.

The photon will later be detected by one of two
detectors, C and D. To describe this process in quantum
terms, we assume that |C) is the initial quantum state of
C, and that the process of its detecting a photon in a
wavepacket |c) is described by

l)IC) — |C7), (2)

where |C*) is the triggered state of the detector after it
has detected the photon. Once again, the arrow indicates
the unitary time evolution produced by solving Schrédin-
ger’s equation. It is helpful to think of [C) and |C*) as
physically quite distinct: Imagine that a macroscopically
large pointer, initially horizontal in |C), is moved to a
vertical position in the state |C*) when the photon has
been detected.

By putting together the processes (1), (2), and the
counterpart of (2) that describes the detection of a photon
in the d channel by detector D, one finds that the unitary
time development of the entire system shown in figure 1
is of the form

@IC)ID) — 1S) = (IC*)ID) +|CID) /2. 3

physicists was introduced shortly
thereafter by Max Born. Since then,
chance and determinism have maintained a somewhat
uncomfortable coexistence within quantum theory, with
many scientists continuing to share Einstein’s view that
resorting to probabilities is a sign that something is
incomplete.

A stochastic theory

By contrast, the consistent-histories viewpoint is that
quantum mechanics is fundamentally a stochastic or prob-
abilistic theory, as far as time development is concerned,
and that it is not necessary to introduce some determi-
nistic underpinning of this randomness by means of hid-
den variables. The basic task of quantum theory is to use
the time-dependent Schriodinger equation, not to generate
deterministic orbits, but instead to assign probabilities to
quantum histories—sequences of quantum events at a
succession of times—in much the same way that classical
stochastic theories assign probabilities to sequences of coin
tosses or to Brownian motion. This perspective does not
exclude deterministic histories, but those are thought of
as arising in special cases in which the probability of a
particular sequence of events is equal to 1.

For the gedanken experiment in figure 1, the consis-
tent-histories solution to the first measurement problem
consists of noting that a perfectly good description of what
is happening is provided by assuming that the initial state
is followed at a later time by one of two mutually exclusive
possibilities: |C*)|D) or |C)|D*). They are related to each
other in much the same way as heads and tails in a coin
toss. That is to say, the system is described by one (and,
in a particular experimental run, only one) of the two
quantum histories:

[@)IC)D) = [C)D) or [@)|C)ID) - [C)D"),  (4)

where the arrow no longer denotes unitary time develop-
ment. Quantum theory assigns to each history a prob-
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ability of %. (Of course, to check this prediction, one would
have to repeat the experiment using several photons in
succession, each time resetting the detectors.)

The troublesome macroscopic quantum superposition
state |S) of (3) appears nowhere in (4). Indeed, as we
discuss below, the rules of consistent-histories quantum
theory mean that |S) cannot occur in the same quantum
description as the final detector states employed in (4).
Therefore, the first measurement problem has been solved
(or, at least it has disappeared) if one uses the stochastic
histories in (4) in place of the deterministic history in (3).

The fundamental beables of consistent histories quan-
tum theory—that is, the items to which the theory can
ascribe physical reality, or at least a reliable logical mean-
ing—are consistent quantum histories: sequences of suc-
cessive quantum events that satisfy a consistency condi-
tion about which more is said below. A quantum event
can be any wavefunction—that is to say, any nonzero
element of the quantum Hilbert space. The two histories
in (4), as well as the single history in (3), are examples
of consistent quantum histories. They are thus acceptable
quantum descriptions of what goes on in the system shown
in figure 1.

At this point, the reader may be skeptical of the claim
that the first measurement problem has been solved. We
have simply replaced (3), with its troublesome macroscopic
quantum superposition state, by the more benign pair of
histories in (4). But as long as (3) is an acceptable his-
tory—as is certainly the case from the consistent-histories
perspective—how can we claim that (4) is the correct
quantum description rather than (3)? Or is it possible that
both (3) and (4) apply simultaneously to the same system?
Before attempting an answer, let us take a slight detour
to introduce the concept of quantum incompatibility, which
plays a central role in the consistent-histories approach
to quantum theory.

Quantum incompatibility

The simplest quantum system is the spin degree of free-
dom of a spin-% particle, described by a two-dimensional
Hilbert space. Every nonzero (spinor) wavefunction in this
space corresponds to a component of spin angular momen-
tum in a particular direction taking the value % in units
of #. Thus the quantum beables of this system, in the
consistent-histories approach as well as in standard quan-
tum mechanics, are of the form S,, = %, where w is a unit
vector pointing in some direction in three-dimensional
space, and S,, is the component of spin angular momentum
in that direction. (Actually, S,, = % corresponds to a whole
collection of wavefunctions obtained from each other
through multiplication by a complex number, and thus to
a one-dimensional subspace of the Hilbert space.)

The nonclassical nature of quantum theory begins to
appear when one asks about the relationship of these
beables, or quantum states, for two different directions w.
If the directions are opposite, for example +z and —z, the
states S,=% and S_,=Y% are two mutually exclusive
possibilities, one of which is the negation of the other.
Thus they are related in the same way as the results of
tossing a coin: if heads (S, = %) is false, tails (S, =-%) is
true, and vice versa. This means, in particular, that the
proposition “S, =% and S, =-%" can never be true. It is
always false.

That this is a reasonable way of understanding the
relationship between S, =% and S, =% is confirmed by
the fact that if a spin-Y% particle is sent through a Stern—
Gerlach apparatus with its magnetic field gradient in the
z direction, the result will be either S, = % or —%, as shown
by the position at which the particle emerges. Precisely
the same applies to any other component of spin angular
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momentum. Thus, for example, S, =Y is the negation of
S, =-%. (As an amusing aside, we note that when Otto
Stern proposed in 1921 to demonstrate the quantization
of angular-momentum orientation, Born assured him that
he would see nothing, because such spatial quantization
was only a mathematical fiction.®)

But what is the relationship of beables that corre-
spond to components of spin angular momentum for di-
rections in space that are not opposite to each other? How,
for example, is S, = % related to S, = %? In consistent-his-
tories quantum theory, “S, = % and S, = %” is considered
a meaningless expression, because it cannot be associated
with any genuine quantum beable, that is, with any
element of the quantum Hilbert space. Note that every
non-zero element in that space corresponds to S, =% for
some direction w, so there is nothing left over that could
describe a situation in which two components of the spin
angular momentum both have the value %.

Putting it another way, there seems to be no sensible
way to identify the assertion “S, =% and S, =%,” with
S, = % for some particular direction w. (For a more de-
tailed discussion, see section 4A of reference 7.) That
agrees, by the way, with what all students learn in intro-
ductory quantum mechanics: There is no possible way to
measure S, and S, simultaneously for a spin-% particle.
From the consistent-histories perspective, this impossibil-
ity is no surprise: What is meaningless does not exist, and
what does not exist cannot be measured.

Meaningless or simply false?

It is very important to distinguish a meaningless state-
ment from a statement that is always false. “S, =% and
S, =% is always false, because S, =% and S, =—-Y% are
mutually exclusive alternatives. The negation of a state-
ment that is always false is a statement which is always
true. By contrast, the negation of a meaningless statement
is equally meaningless. The negation of the meaningless
assertion “S, = % and S, = %,” following the ordinary rules
of logic, is “S,=-Y% or S,=-%.” In consistent-histories
quantum theory, this latter assertion is just as meaning-
less as the former. How, after all, would one go about
testing it by means of an experiment?

This spin-% example is the simplest illustration of
quantum incompatibility: Two quantum beables A and B,
each of which can be imagined to be part of some correct
description of a quantum system, have the property that
they cannot both be present simultaneously in a mean-
ingful quantum description. That is, phrases like “A and
B” or “A or B,” or any other attempt to combine or compare
A and B, cannot refer to a real physical state of affairs.
Many instances of quantum incompatibility come about
because of the mathematical structure of Hilbert space
and the way in which quantum physicists understand the
negation of propositions. Others are consequences of vio-
lations of consistency conditions for histories. In either
case, the concept of quantum incompatibility plays a
central role in consistent histories. Failure to appreciate
this has, unfortunately, led to some misunderstanding of
consistent-histories ideas.

Now let us return to the discussion of the histories
in (8) and (4). The two histories in (4) are mutually
exclusive; if one occurs, the other cannot. Think of them
as analogous to S, = % and S, = —% for a spin-% particle.
On the other hand, each of the histories in (4) is incom-
patible, in the quantum sense, with the history in (3),
which one can think of as analogous to S, = %. Indeed,
the relationship between the state |S) in (3) and the states
|C)D*y and |C*)ID) in (4) is formally the same as that
between the state S,=% and the states S,=% and
S, = —Y%. Consequently, the question of whether (3) occurs
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rather than, or at the same time as, the histories in (4)
makes no sense.

It may be helpful to push the spin analogy one step
further. Imagine a classical spinning object subjected to
random torques of a sort that leave L,, the x component
of angular momentum, unchanged while randomly alter-
ing the other two components, L, and L,. In such a case,
a classical history that describes only L, will be determi-
nistic; it will have a probability of 1. L,, on the other hand,
can be described by a collection of several mutually ex-
clusive histories, each having a nonzero probability.

Of course, classical histories of this kind can always
be combined into a single history, whereas the determi-
nistic quantum history in (3), corresponding to the L,
history in this analogy, cannot be combined with the
stochastic histories in (4), the analogs of the L, histories.
Nevertheless, the analogy has some value in that it sug-
gests that (3) and (4) might be regarded intuitively as
describing alternative aspects of the same physical situ-
ation. Although all classical analogies for quantum sys-
tems break down eventually, this one is less misleading
than trying to think of (3) and the set of histories in (4)
as mutually exclusive possibilities. It helps prevent us
from undertaking a vain search for some “law of nature”
that would tell us that (4) rather than (3) is the correct
quantum description.

The second measurement problem

Particle physicists are always designing and building their
experiments under the assumption that a measurement
carried out in the real world can accurately reflect the
state of affairs that existed just before the measurement.
From a string of sparks or bubbles, for example, they infer

OTTO STERN, who, with Walther Gerlach, showed in 1922 that the
angular-momentum orientation of a silver atom is quantized.
Though we see him here as an elegant pipe smoker, it was the
sulfurous breath attributed to his customary cheap cigars that
rendered the two faint telltale silver streaks on the Stern-Gerlach
atomic-beam apparatus visible.®

the prior passage of an ionizing particle through
the chamber. Extrapolating the tracks of several
ionizing particles backward, they locate the point
where the collision that produced the particles
took place. But according to many textbook ac-
counts of the quantum measuring process,
retrodictions that use experimental results to in-
fer what the particle was doing before this kind
of measurement was made are not possible.
Should we conclude, then, that experimenters
don’t take enough courses in quantum theory?

The consistent-histories analysis shows that
the experimenters do, in fact, know what they are
doing, and that such retrodictions are perfectly
compatible with quantum theory. It also provides
general rules for carrying out retrodictions safely,
without producing contradictions or paradoxes.
The consistent-histories approach even offers
some insight into why the textbooks have often
regarded retrodiction as dangerous.

The basic idea can be illustrated once again
by reference to figure 1. Suppose the photon has
been detected by detector C. In which channel
was it just prior to detection: channel ¢ or d? The
very nature of the question tells us that (3) is of
no help; we must resort to the histories in (4). But even
they are inadequate, because they tell us nothing about
what the photon is doing at intermediate times. To address
that question, we must consider the following refinements
of the histories in (4):

[)IC)D) — [e)|C)D) — |C*)ID),
l)IC)D) — |dIC)ID) — )IC)ID"), (5)

in which intermediate events have been added to describe
the photon after it passes through the beam splitter, but
before it is detected. The consistent-histories rules assign
a probability of % to each of these histories. That means
it is impossible, given the initial state, to predict whether
the photon will leave the beam splitter through channel
¢ or d. But if the final detector state is |C*)|D), meaning
that C has detected the photon, then the first history in
(5), not the second, is the one that actually occurred. So,
at the intermediate time, the photon was in state |c) rather
than |d). That is to say, it was in the c¢ channel.

Why has this rather obvious way of solving the second
measurement problem been overlooked for so long? Prob-
ably because a quantum physicist who grew up with the
standard textbooks will describe the situation in figure 1
by means of a pair of histories

l)IC)D) — 1s)IC)ID) — |C*)ID),
l)IC)D) — [s)IC)D) — [C)|D"), (6)

in which, at the intermediate time, the photon is in the
superposition state |s) defined in (1). He will wait until
the measurement takes place and then “collapse” the
wavefunction for reasons that he may not understand very
well. But at least they make more sense to him than does
the macroscopic quantum superposition state |S) of (3).
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Consistency Conditions: An Application

he consistency conditions as formulated in reference 9

are obtained by associating with each of the histories in
a particular family a “weight” operator on the Hilbert space,
and then requiring that the weight operators for mutually
exclusive histories be orthogonal to each other—the operator
inner product being generated by the trace. This somewhat
abstract prescription is best understood by working through
simple examples, such as the one in section 6C of reference
8. Here, we give an application of the consistency conditions
to a situation of some physical interest.

Consider the Mach-Zehnder interferometer illustrated in
figure 2. A wavepacket of light passing through the first beam
splitter B, is reflected by a pair of mirrors, C and D, onto a
second beam splitter B, preceding the output channels e and
/- The effect of B, on the wavepacket |4) of a photon in the
initial 2 channel at time ¢, is to produce, at a slightly later
time f,, the same kind of superposition |s) of wavepackets
|c) and |d) in the ¢ and d arms of the interferometer as we had
in equation (1). The effect of the second beam splitter is given
by

le) = (&) + P ) /2.

Id) = (=le) + ) /2, @
where |e) and |f) are wavepackets in the output channels at
t3. The optical paths have been so arranged that the two
le) components in (7) appear with opposite phases.

Therefore, when we combine (1) and (7), we see that the
photon entering at 2 must emerge in channel £, corresponding
to the three-time history

la) = 1) > If), ®

which satisfies the consistency conditions simply because it is

a solution of Schrédinger’s equation.
On the other hand, the pair of mutually exclusive histories
|y = |c) = |f) and |a) — |d) — [f), ©9)
in which the particle passes through either the c or d arm at
the intermediate time ¢, and then emerges in the f channel,
are not consistent, because the corresponding weight operators
are not orthogonal. The reader may check this by the methods
of reference 9, but it will require some work.

Consequently, it makes no sense to say that the particle
passes through the c or the d arm and then emerges in the f
channel. However, the two histories

la) = [0) = (&) + ) /N2

&) = 1d) = (e} + /) /2 (10)
are consistent, because here the weight operators are orthogo-
nal. Again we leave the proof as an exercise. Thus it makes
perfectly good sense to say that the photon passes through
the ¢ arm and emerges in a certain coherent superposition of
states in the two output channels, or through the d arm to
emerge in a different superposition.

This Mach-Zehnder example is analogous to the canonical
double-slit experiment, if one regards passing through the c or
d arm as analogous to passing through the upper or lower slit,
and emerging in e or fas analogous to the particle arriving at a
point of minimum or maximum intensity in the double-slit
interference zone.

From the standpoint of consistent histories, such a
physicist is, in effect, employing the histories in (6), which
are perfectly good quantum beables, as part of a stochastic
quantum description. However, if the photon is in the
superposition state |s) at the intermediate time, quantum
incompatibility implies that it makes no sense to ask
whether it is in the ¢ channel or the d channel. That
question can be asked only in the context of the histories
in (5).

The existence of a quantum description employing the
set of histories in (6), in which the question of the rela-
tionship between the measurement result and the location
of the photon before the measurement is meaningless, does
not invalidate the conclusion reached by means of the
histories in (5), which provide a definite answer to that
question. It is a quite general feature of quantum reason-
ing that various questions of physical interest can be
addressed only by constructing an appropriate quantum
description. That is quite unlike classical physics, where
a single description, such as specifying a precise point in
the phase space of a mechanical system, suffices to answer
all meaningful questions.

Consistency conditions

The beables in consistent-histories quantum theory are a
collection of mutually exclusive histories to which prob-
abilities are assigned by the dynamical laws of quantum
mechanics (Schrédinger’s equation). If the histories involve
just two times, as in (4), these probabilities are given by
the usual Born rule—namely, the absolute square of the
inner product of the time-evolved initial state and the
final state in question. Histories involving three or more
times, as in (5), require a generalization of the Born rule
and additional consistency conditions to assure that the
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FIGURE 2. A MACH-ZEHNDER INTERFEROMETER, in which
the first beam splitter B; transforms an initial photon
wavepacket |4) into a superposition of |c) and |d) wavepack-
ets in the two arms. The second beam splitter turns each of
these wavepackets into a superposition of wavepackets |e)
and |[f) in the output channels. (See equations (7).)

probabilities make physical sense.

Not all collections of mutually exclusive histories
satisfy the mathematical conditions of consistency. The
consistent-histories approach ascribes physical meaning
only to histories that satisfy the consistency conditions.
Other cases are regarded as meaningless; that is to say,
they are rather like trying to simultaneously ascribe
values for S, and S, to a spin-% particle. (See the box
above for additional remarks on consistency conditions.)

Consistency conditions are needed for a consistent



discussion of the quantum double-slit experiment,® in
which a wavepacket approaches the slits at time £, it
passes through one or the other slit just before ¢, and it
arrives at £; at some point in the interference zone, where
waves from the two slits interfere with each other. It turns
out that histories in which the particle passes through a
particular slit and then arrives at a particular point in
the interference zone do not satisfy the consistency con-
ditions, and thus do not constitute acceptable quantum
beables. That will come as no surprise to generations of
students who have been taught that asking which slit the
particle passes through is not a sensible question. In this
respect, the consistency conditions support the physicist’s
usual intuition at the same time as they provide a precise
mathematical formulation applicable in other situations
where intuitive arguments are not sufficient for precise
analysis.

On the other hand, if there are detectors just behind
the two slits, one’s physical intuition says that it should
be sensible to say which slit the particle passes through.
Such intuition is used all the time in designing experi-
ments in which collimators are placed in front of detectors.
In that case, the relevant histories, which are the analogs
of (5), turn out to be consistent. Furthermore, even if there
are no detectors behind the slits, there are consistent
histories in which the particle passes through a particular
slit and then arrives in a spread-out wavepacket in the
interference zone, rather than at a particular point. (See
the box for more details in an analogous situation involv-
ing a Mach—Zehnder interferometer.)

The physical consequences of consistency conditions
are still being explored, and there is not yet complete
agreement even on their mathematical form. However, the
different formulations one finds in references 9, 10, and
11 do not seem to make any significant difference in most
physical applications.

Classical limit

Because classical mechanics provides an excellent descrip-
tion of the motion of macroscopic objects in the everyday
world, one would expect that quantum theory, in an
appropriate limit, would yield the laws of classical physics
to very good approximation. This conclusion is supported
by Paul Ehrenfest’s argument, which one finds in elemen-
tary textbooks, to the effect that average values of certain
quantum observables satisfy equations similar to those of
classical mechanics. But that is not a satisfactory solution
to the problem of the classical limit, for two reasons: One
wants to know how individual systems behave, not just
the ensemble to which such an average applies. Further-
more, such an average, in the usual textbook under-
standing of quantum theory, refers to the results of meas-
urements, and is not valid when measurements are not
made.

In the consistent-histories approach, the classical
limit can be studied by using appropriate subspaces of the
quantum Hilbert space as a “coarse graining,” analogous
to dividing up phase space into nonoverlapping cells in
classical statistical mechanics. This coarse graining can
then be used to construct quantum histories. It is neces-
sary to show that the resulting family of histories is
consistent, so that the probabilities assigned by quantum
dynamics make good quantum mechanical sense. Finally,
one needs to show that the resulting quantum dynamics
is well approximated by appropriate classical equations.

Demonstrating all this in complete detail is a difficult
problem. But so is the analogous problem of finding the
behavior of a large number of particles governed by clas-
sical mechanics. Indeed, the problem of showing that a

system of classical particles will exhibit thermodynamic
irreversibility, a typical macroscopic phenomenon, has not
yet been settled to everyone’s satisfaction, despite a con-
tinuing effort that goes back to Ludwig Boltzmann’s work
a century ago. (See the articles by Joel Lebowitz in PHYSICS
ToDAY, September 1993, page 32, and by George Zaslavsky
in this issue, page 39.)

Nonetheless, calculations carried out by one of us,:12
and by Gell-Mann and Hartle,® indicate that, given a
suitable consistent family, classical physics does indeed
emerge from quantum theory. Of course the classical
equations are only approximate. They must be supple-
mented by including a certain amount of random noise,
as one would expect from the fact that quantum dynamics
is a stochastic process. In many circumstances, this quan-
tum noise will not have much influence, but it can be
amplified in systems that exhibit (classical) chaotic behav-
ior. Even so, because the classical dynamics of such sys-
tems is noisy for all practical purposes, even if it is
deterministic in principle, they are not likely to exhibit
distinctive quantum effects.

The consistency of a family of histories for a macro-
scopic system is often ensured by quantum decoherence,
an effect closely related to thermodynamic irreversibility.
(See the article by Wojciech Zurek in PHYSICS ToDAY,
October 1991, page 36.) Demonstrating that quantum
systems actually exhibit irreversible behavior in the ther-
modynamic sense, on the other hand, is not trivial. There
are conceptual and computational difficulties similar to
those that arise when one considers a classical system of
many particles. Nonetheless, there seems at present to be
no difficulty, in principle, that prevents us from under-
standing macroscopic phenomena in quantum terms, in-
cluding what happens in a real measurement apparatus.
Thus, by interpreting quantum mechanics in a manner in
which measurement plays no fundamental role, we can
use quantum theory to understand how an actual meas-
uring apparatus functions.
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