BATTLING DECOHERENCE:
THE FAULT-TOLERANT
QUANTUM COMPUTER

Information carried by a
quantum system has noto-
riously weird properties.
Physicists and engineers are
now learning how to put that
weirdness to work. Quantum
computers, which manipulate

classical bits, may someday be
able to perform tasks that
would be inconceivable with
conventional digital technol-
ogy. (See the article by Charles
H. Bennett, PHYSICS TODAY, October 1995, page 24, and
the “Search and Discovery” report in PHYSICS TODAY,
March 1996, page 21.)

Formidable obstacles must be overcome before large-
scale quantum computers can become a reality (see the
article by Serge Haroche and Jean-Michel Raimond, PHYS-
1cs TopAY, August 1996, page 51). A particularly daunting
difficulty is that quantum computers are highly suscepti-
ble to making errors. The magical power of the quantum
computer comes from its ability to process coherent quan-
tum states; but such states are very easily damaged by
uncontrolled interactions with the environment—a process
called decoherence. In response to the challenge posed by
decoherence, the new discipline of quantum error correc-
tion has arisen at the interface of physics and computer
science. We have learned that quantum states can be
cleverly encoded so that the debilitating effects of deco-
herence, if not too severe, can be resisted.

The power of the quantum computer

The indivisible unit of classical information is the bit,
which takes one of the two possible values, 0 or 1. Any
amount of classical information can be expressed as a
sequence of bits. A classical computer executes a series of
simple operations (often called “gates”), each of which acts
on a single bit or pair of bits. By executing many gates
in succession, the computer can evaluate any Boolean
function of a set of input bits.

Quantum information, too, can be reduced to elemen-
tary units, called quantum bits or qubits. A qubit is a
two-level quantum system (like the spin of an electron).
A quantum computer executes a series of elementary
quantum gates, each of which is a unitary transformation
that acts on a single qubit or pair of qubits. By executing
many such gates in succession, the quantum computer
can apply a complicated unitary transformation to a par-
ticular initial state of a set of qubits. Finally, the qubits
can be measured; the measurement outcome is the final
result of a quantum computation.
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Quantum computers have the potential to
do certain calculations faster than any
foreseeable classical computers, but their
success will depend on preserving complex
coherent quantum states. Recent
quantum states rather than - discoveries have shown us how to do that.

John Preskill

A classical computer can
faithfully simulate a quan-
tum computer, so that any-
thing the quantum computer
could do, the classical com-
puter could also do. Still,
there is a sense in which the
quantum computer appears
to be a more powerful device:
Its simulation by the classi-
cal computer is very ineffi-
cient. The quantum state of
even a modest number of qu-
bits (let’s say 100) lives in a Hilbert space of unimaginably
large dimension: 21%° ~ 10%°. To simulate a typical quan-
tum computation, a classical computer would need to work
with matrices of exponentially large size, which would
take a very long time. In more physical terms, running a
classical simulation of a quantum computer is hard be-
cause (as exemplified by John Bell’s famous inequalities)
correlations among quantum bits are qualitatively differ-
ent from correlations among classical bits. The exponential
explosion in the size of Hilbert space as we increase the
number of qubits arises because the correlations among
qubits are too weird to be expressed easily in classical
language.

That simulating a quantum computer with a classical
computer takes an unmanageably long time suggested to
Richard Feynman! that using a quantum computer might
enormously speed up finding solutions to certain hard
computational problems. David Deutsch,? developing the
idea further, observed that a quantum computer can in-
voke a kind of massive parallelism, by operating on a
coherent superposition of a vast number of classical states.
In fact, a single computation acting on just 300 qubits can
achieve the same effect as 23°° simultaneous computations
acting on classical bits, more than the number of atoms
in the visible universe. We could never build a conven-
tional computer with that many processors!

Peter Shor® discovered how, in principle, to apply
quantum parallelism to the problem of finding the prime
factors of a large integer. The difficulty of factoring an
integer escalates very rapidly as the number of its digits
increases. For example, suppose that we want to find the
65-digit prime factors of a 130-digit composite number. A
network of hundreds of powerful workstations, collaborat-
ing and communicating over the Internet and running the
best algorithms known, might solve the problem in a few
months. To factor a 400-digit number, the same network
of workstations running the same algorithms would need
about 10 billion years (the age of the universe). Even
with vast improvements in technology, no one will be
factoring 400-digit numbers using conventional comput-
ers anytime soon, unless there is an unexpected algo-
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rithmic breakthrough.

But now suppose we have a quantum computer that
runs just as fast as that network of workstations—that
is, it can perform the same number per second of elemen-
tary operations on pairs of qubits as the classical computer
can perform elementary logic gates on pairs of bits. That
quantum computer could factor the 130-digit number in
a few seconds, and the 400-digit number in just minutes.
Thanks to quantum parallelism, the difficulty scales in a
much more reasonable way with the size of the input to
the problem. For very large numbers, the advantage en-
joyed by the quantum computer is truly stupendous.

The challenge of error correction

If quantum computers would be so marvelous, why don’t
we just build one? There are technological challenges, to
be sure. But are there any obstacles that might be fun-
damental matters of principle, that would prevent us from
ever constructing a quantum computer?

In fact, there is a problem of principle that is poten-
tially very serious: decoherence. Unavoidable interactions
with the environment will cause the quantum information
stored in a quantum computer to decay, thus inducing
errors in the computation. Decoherence occurs very rapidly
in complex quantum systems, which is why we never
observe macroscopic superpositions (such as a coherent
superposition of a live cat and a dead cat). If quantum
computers are ever to be capable of solving hard problems,
a means must be found to control decoherence and other
potential sources of error.

Errors can be a problem even for classical information.
We all have bits that we cherish, while everywhere there
are dragons lurking who delight in tampering with our
bits. But we have learned some ways to protect classical
information from the dragons. If I have a bit with the
value O that I want to preserve, then I can store two
backup copies of the bit. Eventually, a dragon could come
along and flip one of my three bits from 0 to 1. But I can
employ a busy beaver to check the three bits frequently;
when he finds that one has a different value than the
others, he flips that bit so that all three match again.

FIGURE 1. DOOR NUMBER 1
or door number 2? To read
quantum information reliably,
we need to know how it was
stored. We can represent an
unknown quantum bit (qubit)
as a colored ball placed in a
box through one of two
doors. The doors represent
two ways of measuring the
qubit (such as the axis along
which to measure spin), and
the two colors represent the
possible outcomes of the
measurement. If the ball is
placed in the box through
door 1, and then it is observed
through door 2, the color of
the ball that comes out of the
box is random.

That way, as long as the dragon has not had a chance to
flip two bits, the error can be corrected and the information
will be protected.

We would like to apply the same principle of redun-
dant storage to quantum information, but, because qubits
are different from classical bits, there are complications.
We might visualize a qubit as a colored ball, either red
or green, concealed in a locked box, that can be opened
through either of two doors. The doors represent two ways
of measuring the qubit, just as we could measure the spin
of an electron along either the z or the x axis; the two
possible colors represent the possible outcomes of the
measurement. If we store a ball in the box through door
1 or door 2 and we later open the same door, we can
recover our bit and read it, just as we would read classical
information. But if we store the ball through door 1 and
then open door 2, what comes out will be completely
random (has equal probability of being red or green); the
outcome tells us nothing about what we put inside the
box (see figure 1). To read quantum information reliably
we need to know how it was stored; otherwise we are
bound to damage it irrevocably.

The first problem we encounter in the battle against
decoherence is that an unknown quantum state cannot be
perfectly duplicated;* hence we cannot safeguard a quan-
tum computer against errors by storing backup copies of
its state. Roughly speaking, the trouble is that to duplicate
the information in a quantum box, a copier must open a
door to see what is inside. If it just happens to open the
same door that was used to store the information, it can
make an accurate copy. But if it guesses wrong, it will
irrevocably damage the information instead. We can clone
a sheep, but not a qubit!

A second problem is that there are more things that
can go wrong with quantum information than with clas-
sical information. The dragon might open door 1, change
the color of the ball, and reclose the box—that would be
a bit-flip error analogous to the errors that can afflict
classical information. Or he might open door 2, change
the color, and reclose the box—that would be a phase error,
for which classical information has no analog. The beaver
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FIGURE 2. ERROR CORRECTION by collective measurement
preserves a coherent quantum state. The lurking dragon has
flipped one of the three qubits. Measuring two qubits at a time
(blue brackets), the busy beaver determines that the first and
second qubits are different colors and that the second and
third qubsits are the same color. He then infers that the first
bit has flipped, and repairs the damage.

needs to be able to fix the error without knowing ahead of
time whether the dragon is going to use door 1 or door 2.

Third, whereas errors in classical information are
discrete, errors in quantum information form a continuum.
Rather than simply flipping a bit, the dragon might
introduce a more subtle kind of error by performing the
bit flip with some (small) probability amplitude . The
beaver must be able to recover from that kind of small
error; otherwise small errors will accumulate over time,
eventually building up to become large errors.

Finally, to diagnose whether errors have occurred, the
beaver must look at some qubits—and therefore must open
some boxes. But quantum measurement necessarily dis-
turbs the state that is being measured, so we worry that
the beaver cannot check for errors without introducing
further errors.

Quantum error-correcting codes

As recently as four years ago, the difficulties described
above seemed highly discouraging. But in 1995, Shor and
Andrew Steane discovered®® that the obstacles were illu-
sory—that quantum error correction really is possible.
Theirs is one of the most important discoveries about
quantum information in recent years, and it can be ex-
pected to have far-reaching implications.

To appreciate the insights of Shor and Steane, let’s
first consider how to defend quantum information against
a dragon who performs only bit flips (we’ll return to the
issue of phase errors shortly). We are to protect the state

al0) + bl1), (D
a coherent superposition of the red (|0)) and green (|1))
states of a single qubit, where the complex coefficients a
and b are unknown. Were the dragon to attack, the bit
flip would transform the state to

all) + 00}, (2)
and damage would be inflicted unless a = +b. The beaver’s

assignment is to diagnose and reverse bit flips, but without
disturbing the delicate superposition state, that is without
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modifying a and b.

Well schooled in classical error correction, the beaver
applies the principle of redundant storage by encoding the
qubit in a state of three qubits. The red state is encoded
as three red qubits, and the green state as three green
qubits; that is,

|0y — |9> =000, (3)
1) = [1) = |111).
Thus the unknown superposition state becomes
al0) + b|1) — a|0) + b|1) = a|000) + b|111). 4)

This redundant state is not the same as three identical
copies of the original unknown state, which would be

(al0) + b|1)) (a|0) + b|1)) (al0) + b[1)). (5)

Although it is impossible to copy unknown quantum in-
formation, nothing prevents us from building a (unitary)
machine that will execute the encoding transformation
given as equation 4.

Now suppose that the dragon flips one of the three
qubits, let’s say the first one, so that the state becomes

a|100) + b|011), (6)

and the beaver is to detect and reverse the damage. His
first impulse would be to open the boxes and look to see
if one ball was a different color from the others, just as
he would to diagnose errors in classical information, but
he must resist that temptation. If he were to open door
1 of all three boxes, he would find either [100) (with
probability |a[?), or |011) (with probability [b[?); either way,
the coherent quantum information (the values of @ and b)
would be irrevocably lost.

But he is a clever beaver who knows he need not
restrict his attention to single-qubit measurements. In-
stead, he performs collective measurements on two qubits
at once (see figure 2). The beaver asks whether the first
two qubits have the same color or different colors, without
trying to ascertain the color of either one. He finds that
the colors are different. Then he asks whether the second
and third qubits have the same color or different colors.
He finds that the colors are the same. From the two
measurement outcomes, the beaver infers that the first
qubit has flipped relative to the other two and should be
flipped back to repair the damage. In executing this
protocol, the beaver has not learned anything about the
encoded state (the values of a and b), hence the recovery
procedure itself has inflicted no damage.

The beaver won that round, but now the dragon tries
a more subtle approach. Rather than flipping the first
qubit, he rotates it only slightly, so that the three-qubit
state becomes

a|000) + b[111) —
al000) + b|111) + & (a|100) + b|011)) + O(£?), (7

where |¢| < 1. What should the beaver do now? In fact,
he can do the same thing as before. If he performs a
collective measurement on the first two qubits, then most
of the time (with probability 1 - |g/?), the measurement
will project the damaged state (equation 7) back to the
completely undamaged state (equation 4). Only much more
rarely (with probability |¢|?) will the measurement project
onto the state given as equation 6 with a bit-flip error.
But then the measurement outcome tells the beaver
what action to take to repair the damage, just as in the
previous case.

Of the four difficulties for quantum error correction
cited above, then, we have already seen how three can be
overcome. We can encode a quantum state redundantly
without violating the no-cloning principle. We can perform



collective measurements that let us
acquire information about the nature
of the errors without revealing any-

Sed SE8 SE

thing about the state, and so without )

damaging the state. We can control AT
the accumulation of small errors by a @
repeatedly making measurements Z
that either reverse the damage or

introduce large errors that we know b
how to correct. It remains only to
resolve one more issue: the problem

of phase errors.

Fixing phases

The code we have devised so far pro-
vides no protection against a dragon
who flips the relative phase of |0) and
[1). If such a dragon attacks any one
of our three qubits, then our encoded
state a0) +b|1) is transformed to
a|0) — b|1), and the encoded quantum
information is damaged if a and b
are both nonzero. But the method we
developed to conquer the bit-flip er-

FIGURE 3. A QUANTUM CODE. It is possible to correct both bit-flip and phase-flip
errors by encoding one qubit of quantum information in a block of nine qubits.
Collective measurements preserve unknown individual qubit states (represented by
closed boxes). (a) Six two-qubit observables (such as the tensor product of Pauli
matrices 0l ® o)) are measured to diagnose bit flips. (b) Two six-qubit observables
(such as the tensor product of Pauli matrices o ® 0? ® 0 ® ¥ ® 0 ® 0 )
are measured to diagnose phase flips. Entropy introduced by errors is extracted in
the form of a random measurement record, which can be discarded.

rors can be extended to deal with
phase errors as well—just as we pro-
tected against bit-flip errors by encoding bits redundantly,
we can protect against phase-flip errors by encoding
phases redundantly.

Following Shor,® we may encode a single qubit using
a block of nine qubits (see figure 3), according to

10) = [0)
= ﬁ (1000) + [111)) (|000) + |111)) (J00O) + |111)),
1) — 1)

E# (1000 — [111)) (|000) — [111)) (J000) — |111)).

Both [0) and |1) consist of three clusters of three qubits
each, with each cluster prepared in the same quantum
state. Each of the clusters has triple-bit redundancy, so
we can correct a single bit flip in any cluster by the method
already discussed above.

Now suppose that a phase flip occurs in one of the
clusters. The error changes the relative sign of [000) and
|111) in that cluster so that

|000) +]111) — |000) —[111),
[000) - [111) — |000) + [111). (9

The relative phase of the damaged cluster will now differ
from the phases of the other two clusters. Thus, we can
identify the damaged cluster, not by measuring the relative
phase in each cluster (which would disturb the encoded
information) but by comparing the phases of pairs of
clusters—a six-qubit collective measurement. The meas-
urement outcomes allow us to infer which cluster has a
sign different from the others, and we may then apply a
unitary phase transformation to one of the qubits in that
cluster to reverse the sign and correct the error.

Error recovery will fail if there are two bit-flip errors
in a single cluster (which would induce a phase error in
the encoded data) or if phase errors occur in two clusters
(which would induce a bit-flip error in the encoded data).
But if the qubits interact only weakly with the environ-
ment and with one another, a double error will be rela-
tively unlikely. Loosely speaking, if each qubit decoheres
with a probability p and the decohering qubits are not

Box 1. Fault Tolerance and Topology

Topological ideas arise naturally in the theory of fault
tolerance. The topological properties of an object remain
invariant when we smoothly deform the object. Similarly,
how a fault-tolerant gate acts on encoded information should
remain unchanged when we deform the gate by introducing
a small amount of noise. In seeking fault-tolerant implemen-
tations of quantum logic, we are led to contemplate physical
interactions with a topological character.

What comes quickly to mind is the Aharonov-Bohm
effect. When an electron is transported around a magnetic flux
tube, its wave function acquires a phase that depends only on
the winding number of the electron about the solenoid; it is
unmodified if the electron’s trajectory is slightly deformed. A
device that processes quantum information by means of
Aharonov-Bohm interactions would be intrinsically fault
tolerant; accordingly, we would not need to implement a
quantum gate with great precision for it to act as we desire.

Unfortunately, the Aharonov-Bohm effect is abelian, and

we need noncommuting gates to build up a complex quantum
computation. But it is possible in principle to devise two-
dimensional spin systems that exhibit more intricate
Aharonov-Bohm phenomena; long-range quantum correla-
tions in the ground state of such a system can induce topo-
logical interactions among the localized quasiparticle
excitations.'? In a suitable spin system, the Aharonov-Bohm
interactions are adequate for executing interesting computa-
tions like the quantum factoring algorithm.

Such an implementation of quantum computation seems
futuristic from the perspective of current technology, but it
is conceptually important. If we could perform quantum logic
by means of topological interactions, then we would be able
to give the beaver a rest! We could protect encoded informa-
tion not by vigilantly checking for errors and reversing them,
but rather by weaving fault tolerance into the design of our
hardware.
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FIGURE 4. QUANTUM LOGIC of a collective B E ‘
measurement. (2) A controlled-NOT gate flips
the target qubit if the control qubit (on top) is
green. Otherwise, it acts trivially. (b) A ’ ’
collective observable of two data qubits (marked A
A and B) is measured by preparing an ancilla \N 7 D

qubit, executing two controlled-NOT gates, and
then measuring the ancilla.

strongly correlated, then the encoded information will
decohere with a probability of order p2. For p sufficiently
small, coding will improve the reliability of the quantum
information.

The nine-qubit code is conceptually simple, but it is
not the most efficient quantum code that can protect
against an arbitrary error afflicting any one of the qubits
in the code block. It turns out that a five-qubit code can
be devised to accomplish the same thing.” More sophisti-
cated codes can be constructed that can protect against
many damaged qubits in the code block.?

Collective measurement and fault tolerance

Collective measurements, which can diagnose errors with-
out damaging the coherence of the data, are crucial to
quantum error correction. Let’s consider more closely how
collective measurements can be carried out. The beaver
would like to learn, for example, whether boxes A and B
(both opened through door 1) contain balls of the same
color or different color, but he doesn’t want to find out the
color of either ball.

To measure such collective observables, he will need
a rudimentary quantum computer that can perform quan-
tum logic gates in which two qubits come together and
interact (see figure 4). A two-qubit gate that is particularly
useful for this purpose is the controlled-NOT gate that
acts according to this rule: If the first (control) qubit is
|0), then the gate acts trivially, but if the first qubit is |1),
the gate flips the value of the second (target) qubit.

When the beaver wants to measure the collective

observable, he first prepares a third (“ancilla”) qubit in
the red state |0). Then a quantum circuit is executed in
which two successive controlled-NOT gates are performed,
each with the ancilla as the target and with the successive
qubits A and B as the controls. If qubits A and B have
the same color, the color of the ancilla qubit is flipped
either zero times or twice, so it is still red when measured;
but if qubits A and B have different colors, there is only
one flip, and the ancilla becomes green. Measuring the
ancilla reveals only the collective property, not the colors
of the two individual qubits.

The ancilla is an essential part of the quantum error
correction procedure, because it serves as a
repository for the entropy that is introduced
into the code block by the errors—it “heats”
as the protected quantum system “cools.” To
protect quantum information for a long time,
we need a continual supply of fresh ancilla
qubits. Alternatively, if the ancilla is to be
recycled, it must be erased. The erasure is
a dissipative process; that is why quantum
(or classical) error correction requires the
expenditure of power.

Since our quantum computer will not
be flawless, errors might occur during the
collective measurement. Therefore, we must

"Eogdg
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FIGURE 5. CODES WITHIN CODES. A single
logical qubit is encoded in a block of five
qubits. Each of the five qubits in that block,
when inspected at higher resolution, is itself
really a block of five qubits. And so on.




Box 2. Experimental Quantum Error Correction

he first experimental

demonstrations of quan-
tum error correction, using

-
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the methods of nuclear mag-
netic resonance (NMR), were
reported in the past year. In

3

those experiments, qubits were
carried by nuclear spins that
were manipulated by radio-

R

frequency pulses, and quan-

o
3o

tum coding was used to pro-
tect a spin from dephasing. In
an experiment by a group
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Pany
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from Los Alamos National
Laboratory and MIT," (sche-
matically illustrated in the
figure), two ancilla spins were
provided, and the qubit to be
protected was encoded in
correlations among the three
by means of a simple quan-
tum circuit. The three spins
were exposed to the de-
phasing dragon for a while,
and then the qubit was de-
coded. The ancilla spins were
measured to reveal whether a
phase error had been sus-
tained; if it had, the damage

Encode

Phase errors Decode

Measure
syndrome

PROTECTING A NUCLEAR SPIN from phase errors. First, some controlled-NOTs and some
single-qubit quantum gates are executed to encode the spin to be protected (top left) in
correlations with the two ancilla spins (shown below it). Then the three spins, now in an
entangled state, are subjected to weak dephasing. Finally, the spins are decoded, and two are
measured to extract a syndrome that diagnoses whether a phase error has occurred.

could be repaired.
In an experiment con-

ducted by a group from IBM/Almaden and Stanford University,* a two-qubit code that could detect a phase error in either qubit
was used, and the output was rejected when an error was detected. In the cases in which no error was detected, an improvement

in fidelity could be verified.

Quantum error correction demonstrations that exploit the tools of quantum optics and atom trapping should be possible in

the near future.®

be careful to design a protocol for error recovery that is
fault tolerant, one that will still work effectively even if
it is not executed perfectly. Indeed, fault-tolerant protocols
can be constructed both for error correction and for exe-
cuting quantum gates that process the encoded informa-
tion.? Box 1 on page 27 describes a topological approach
to fault tolerance.

If we wish to perform a long quantum computation
reliably, we will need to use codes that can protect against
many errors. One family of such codes can be envisioned
as follows!” (see figure 5): Suppose that we encode a single
qubit in a block of five qubits. But each of those five
qubits, when inspected more closely, is itself really another
block of five, encoded as before. And so on. Such an
intricate code requires substantial storage space, but in
return we achieve high reliability. For an error to occur
in the encoded qubit at the highest level, two qubits in
the block of five would need to fail. And for either of those
to fail, two would need to fail at the next level down. And
so on. As we add more levels to the code, the probability
of an error in the encoded qubit drops sharply.

Because of the overhead associated with processing
encoded information, if our quantum hardware is highly
inaccurate, then coding alone may not improve the per-
formance of a quantum computer. But when the hardware
becomes reliable enough, an encoded block will be more
resistant to error than a raw qubit. Then adding another
level to the code will improve the accuracy further. By

using a sufficiently complex code, we can make the error
rate in the encoded data as small as we please."

In principle, then, an arbitrarily long quantum com-
putation can be performed reliably, provided that the
average probability of error per elementary quantum gate
is less than a certain critical value, the accuracy threshold.
The numerical value of the accuracy threshold depends
on the model of decoherence that we adopt, and on other
characteristics of our hardware. If we assume that the
quantum hardware is highly parallelizable (so that we can
execute many quantum gates in a single time step), and
that the qubits decohere more or less independently, then
an error probability per gate of 10~ can be shown to be
acceptable. (Roughly speaking, this error probability can
be interpreted as the ratio of the time required to execute
an elementary gate to the decoherence time of a single
raw qubit.) Of course, to perform a longer computation,
more redundancy will be needed for adequate reliability.
But the required block size of the code grows at a modest
rate with the length of the computation, as a power of a
logarithm of the number of gates to be executed.!!

Outlook

We may now claim to understand, in principle, how to
fight off the destructive effects of decoherence. Though we
may never see a real cat in a superposition of a dead state
and a live state, someday we may be able to prepare an
encoded cat that is half dead and half alive, and to
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maintain that macroscopic superposition for as long as we
please.

At present, though, quantum information technology
remains in its pioneering stage. It is currently possible to
do experiments involving a few qubits and a few quantum
gates (box 2 on page 29). For a quantum computer to
compete with a state-of-the-art classical computer, we will
need machines with hundreds or thousands of qubits
capable of performing millions or billions of operations.
The technology clearly has far to go before quantum
computers can assume their rightful place as the world’s
fastest machines. But now that we know how to protect
quantum information from errors, there are no known
insurmountable obstacles blocking the path. Quantum
computers of the 21st century may well unleash the vast
computational power woven into the fundamental laws of
physics.

Apart from enabling a new technology, the discovery
of fault-tolerant methods for quantum error correction and
quantum computation may have deep implications for the
future of physics. Efficient quantum algorithms (such as
Shor’s factoring algorithm) demonstrate that quantum
systems of modest size can behave in ways that classical
systems could never imitate. What else might coherent
quantum systems be capable of? In what ways will they
surprise, baffle, and delight us? Armed with new tools for
maintaining and controlling intricate quantum states,
physicists of the next century will seek the answers.
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