

RONALD GEBALLE

College of Arts and Sciences for 3 years, and vice-provost for research and dean of the graduate school for 5 years.

This listing, however, does not do justice to the range of contributions Ron made to the university throughout his 55 years there. For instance, his broad interests in education led him in the 1960s to chair a university committee that overhauled the general education requirements. After his formal retirement in 1985, Ron continued for the rest of his life to teach physics in a special program for very capable students that enabled them to enter the university at an unusually early age.

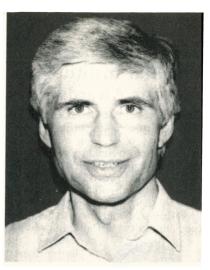
In all, Ron trained about 20 PhD students in the general field of electrical discharges in gases and atomic collisions. His early work (1944-64) on detailed measurements of electrical breakdown and on the transport properties of ions in the discharge broadened into atomic and molecular collision processes. He was a pioneer in investigating the formation of excited atoms in ion-neutral collisions and also the production of autodetaching states of negative ions in collisions with atoms and molecules. He was among the early workers (1965-74) to explore quantitatively electron-impact ionization of excited atoms. He also worked on charge transfer and photodetachment of negative ions.

In the late 1960s, he became deeply involved in national efforts to revise physics education at the high school and freshman college levels. He founded the Pacific Northwest Association for College Physics, an organization that included about 100 regional educational institutions. He was elected and served as the organization's first president. As chairman of Washington's physics department, he was the father of the physics education group and convinced the department

of the importance of doing research on the teaching and learning of physics. At the same time, as chairman, he oversaw the postwar growth and development of the department as a firstrate research unit.

Ron was a prominent figure in the national physics world. He served on the Executive Board of the American Association of Physics Teachers and became its president in 1969. He received AAPT's Distinguished Service Citation in 1973. He was chairman of the APS division of electron and atomic physics (now DAMOP) in 1968–69, was a divisional councilor in 1970–74, and served on numerous APS committees and task forces; he was chairman of the committee on education from 1973 to 1975.

Ron also served on the executive committee and governing board of the American Institute of Physics (1967–71), was chairman of AIP's education committee (1969–71) and chairman of its public policy committee (1983–85). He also served on the US national committee of the International Union of Pure and Applied Physics (1974–76). He was associate editor of the Atomic Data and Nuclear Data Tables in 1969–82, served as chairman of the National Science Foundation's Physics Advisory Committee in 1972–73, and on numerous other committees during his career.


This recounting of Ron's service and accomplishments should not hide his human characteristics. He was a charismatic, warm, and friendly person to all. He was a devoted tennis player and an afficionado of classical music, particularly chamber music. He was deeply concerned about civil liberties and was a member of a University of Washington faculty group that successfully challenged a state-imposed loyalty oath in the post-McCarthy era. The favorable judgment on this suit, which went all the way to the US Supreme Court, removed the imposition of such oaths in other states.

All of us, but especially those at the University of Washington, have suffered a deep loss in the departure of this humanitarian physicist. We mourn his passing.

KENNETH CLARK
ERNEST HENLEY
University of Washington
Seattle, Washington
GORDON DUNN
University of Colorado at Boulder

Otto Friedrich Häusser

Otto Friedrich Häusser, an outstanding leader in Canadian nuclear physics, died on 5 March 1998 in

OTTO FRIEDRICH HÄUSSER

Vancouver after a long battle with myeloma.

Born in Schwabach, Germany, on 9 December 1937, Häusser attended the University of Erlangen, where he earned a diploma in 1962 and his PhD in physics in 1964, based on experiments he conducted at the University of Heidelberg.

After spending 1964–66 in England as a postdoc at the University of Oxford, Häusser joined the research staff of the Chalk River Nuclear Laboratories, where he remained until 1983. At Chalk River, Häusser seized the opportunity to exploit the labs' new Emperor tandem to investigate magnetic moments and other moments of heavy nuclei. The series of brilliant papers that emerged—which he wrote with David Ward, Ian Towner, Tom Alexander, and others—clarified the limits of the nuclear shell model.

In 1984, Häusser moved to Vancouver to join Simon Fraser University's physics faculty and to work at TRI-UMF, where his interests changed to take advantage of the medium-energy proton and neutron beams that were just becoming available. He understood that polarization observables were crucial to understanding nucleon-nucleus interactions in terms of nucleon response functions. With his usual vigor, he developed a focal plane polarimeter for the TRIUMF Medium Resolution Spectrometer, and, by exploiting and extending the latest laser technology. he developed a polarized helium-3 target. Equipped with these innovations and the high-quality proton and neutron beams of TRIUMF, he and his colleagues explored medium-energy charge exchange reactions. Unfortunately, although this work had a substantial impact on the understanding of nuclear spin and isospin response, it did not reveal the hoped-for smoking

gun—that is, direct evidence for subnucleon degrees of freedom.

Häusser's ³He target—acclaimed as a superb *neutron* target by his peers—was also used for pion and muon studies. In addition, its success led Häusser to initiate TRIUMF's involvement in the HERMES experiment in Hamburg.

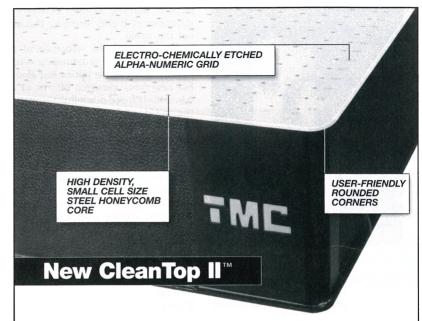
In the recent post-KAON era at TRIUMF, Häusser changed fields again and started development of the neutral atom trap (the TRINAT project), in conjunction with TRIUMF's new radioactive beams, to pursue fundamental studies of weak interactions. Throughout his final illness, he drove himself relentlessly to make TRINAT a reality, and the project continues as one of his most promising legacies.

At Simon Fraser, he displayed remarkable flair for presentation in his lectures on physics, and few took more seriously than he the importance of communicating the results of scientific endeavors.

Everyone who interacted with Häusser was impressed by his intense personal drive, his high standards, and his extraordinary creativity. Not everyone could adjust easily to his intensity, but he drove himself even harder than those he led. All of his colleagues will never forget his passions—for physics, for playing his cello, and for life.

K. PETER JACKSON ERICH W. VOGT TRIUMF

Vancouver, British Columbia, Canada


Nikolai Ivanovich Koroteev

Nikolai Ivanovich Koroteev, a Russian physicist internationally renowned for his contributions to nonlinear spectroscopy and its applications, died in Moscow on 4 December 1998.

Born in Stalingrad (now Volgograd) on 2 April 1947, Koroteev received his scientific training at M. V. Lomonosov Moscow State University. He earned his undergraduate degree in physics in 1971 and was awarded a PhD degree in the same field three years later. For his thesis work, which was guided by Sergey A. Akhmanov, Koroteev exploited the tunability of the optical parametric oscillator to develop the new technique of coherent anti-Stokes Raman spectroscopy (CARS).

In 1978–79, Koroteev was a research fellow at Stanford University, where he pursued applications of the CARS technique. After returning to Moscow, Koroteev earned a DSc degree in physics from Moscow State University in 1983.

Nonlinear optics and nonlinear la-

ITS MOST IMPRESSIVE FEATURES ARE ONLY VISIBLE IN YOUR RESULTS

You can't see the patented breakthrough features that make TMC's CleanTop II the best optical table for demanding applications.

STANDARD

But you can depend on them. That's why CleanTop II is now standard on all TMC tables. CleanTop II starts clean and stays that way. The ultra-flat stainless steel top plate is cleaned of all manufacturing residue. And, TMC's patented spillproof feature has been enhanced with new *corrosion free* Nylon-6 cups. For the ultimate in corrosion protection, we offer 316 alloy stainless

steel cups for a total stainless steel work surface to handle the harshest chemicals. Cups are epoxy-bonded (not welded) to the top plate. Spills can be quickly and completely removed. There is no potential for contamination or outgassing. Precision tapped and countersunk holes accelerate set-up; no wrench is ever required.

OPTIONAL 316-ALLOY STAINLESS accelerate set-up; no wrench is ever required. STEEL CUP And radius corners add to user comfort and safety. To request a catalog, contact our Technical Sales Group.

TMC

Technical Manufacturing Corporation

15 Centennial Drive, Peabody, MA 01960 USA
Tel: 978-532-6330, **800-542-9725**, Fax: 978-531-8682
e-mail: sales@techmfg.com www.techmfg.com

VIBRATION SOLUTIONS WORLDWIDE