
A CONTINUOUS MODEL OF 
COMPUTATION 

A central dogma of com­
puter science is that the 

'lUring-machine model is the 
appropriate abstraction of a 
digital computer. Physicists 
who've thought about the 
matter also seem to favor the 
'lUring-machine model. For 
example, Roger Penrose de-

Physicists should consider an alternative 
to the Turing-machine model of 

computation. 

of computation: the 'lUring­
machine and real-number 
models . In the interest offull 
disclosure, I must tell you 
that I've always used the 
real-number model in my 
work as a computer scientist. 
But I do my best here to Joseph F. Traub 

voted some 60 pages of a book1 to a description of this 
abstract model of computation and its implications. I argue 
here that physicists should consider the real-number 
model of computation as more appropriate and useful for 
scientific computation. 

First, I introduce the four "worlds" that play a role 
here. Above the horizontal line in the diagram on this page 
are two real worlds: the world of physical phenomena and 
the computer world in which simulations are performed. 
Below them are represented two formal worlds: a mathe­
matical model of some physical phenomenon and a model of 
computation that is an abstraction of a physical computer. 
We get to choose both the mathematical model and the model 
of computation. What type of models should we choose? 

The physicist often chooses a continuous mathemati­
cal model for the 
phenomenon un­
der consideration. 
Continuous mod­
els range from the 
dynamical sys­
tems of classical 
physics to the op­
erator equations 
and path inte-
grals of quantum 
mechanics. These 
models are based on the real numbers (as distinguished 
from the subset of rational numbers). The real numbers 
are, of course, an abstraction. It takes an infinite number 
of bits to represent a single real number. (A rational 
number, by contrast, requires only a finite number of bits.) 
But infinitely many bits are not available in the universe. 
One uses the continuous domain of the real numbers 
because it is a powerful and useful construct. Let us accept 
that continuous models are widely used in mathematical 
physics, and that they will continue to occupy that role 
for the foreseeable future. But the computer is a finite­
state machine. What should we do when the continuous 
mathematical model meets the finite-state machine? 

In the next section I compare and contrast two models 
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present balanced arguments. 
Then I show how the real-number model is used in the 
study of the computational complexity of continuous 
mathematical models. (Computational complexity is a 
measure of the minimal computational resources required 
to solve a mathematically posed problem.) This is the 
province of a branch of complexity theory called informa­
tion-based complexity, and what follows is intended to 
demonstrate the power of this theory. 

Two models of computation 
Although many readers are familiar with the 'lUring-ma­
chine model I start by describing it briefly. Then, after 
describing the real-number model, I will discuss the pros 
and cons of these two models. 

Alan 'lUring, one of the intellectual giants of the 
twentieth century, 
defined his ma­
chine model to es­
tablish the unsolv­
ability of David 
Hilbert's Entscheid­
ungsproblem, 2 the 
problem of finding 
an algorithm for 
deciding (ent­
scheiden, in Ger­
man) whether any 

given mathematical proposition is true or false. The 'lUring 
machine is a gedankengadget employing a tape of un­
bounded length, divided into sequential squares, each of 
which is either blank or contains a single mark. For any 
particular input, the resulting calculation and output are 
finite ; that is to say, the tape is blank beyond a certain 
point. The machine's reading head reads one square at a 
time and, after making or erasing a mark, moves one 
square to the left or right. The machine has a finite number 
of internal states. Given its initial state and the input 
sequence on the tape, the machine changes its state and the 
head prints a sy.mbol and moves one square. Finally, the 
machine decides when to halt. 

We turn now to a very brief description of the real­
number model; a precise formulation may be found in the 
literature.3.4 The crux of this model is that one can store 
and perform arithmetic operations and comparisons on 
real numbers exactly and at unit cost. (For the moment, 
I defer discussion of "information operations.") 

The real-number model has a long history. Alexander 
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Ostrowski used it in his work on the computational com­
plexity of polynomial evaluation in 1954. In the 1960s, I 
used the real-number model for research on optimal it­
eration theory and Shmuel Winograd and Volker Strassen 
employed it in their work on algebraic complexity. Henryk 
Wozniakowski and I used the real-number model in a 1980 
monograph on information-based complexity. The 1989 
formalization of the real-number model for continuous 
combinatorial complexity by Lenore Blum, Michael Shub, 
and Steven Smale initiated a surge of research on com­
putation over the real numbers. 

Both models are abstractions of real digital comput­
ers. Of the Turing-machine model, Penrose wrote, "It is 
the unlimited nature of the input, calculation space, and 
output which tells us that we are considering only a 
mathematical idealization."1 Which abstraction to use de­
pends on how useful that abstraction is for a given pur­
pose. What are the pros and cons of these two models of 
computation? 

Turing-machine model-pros and cons 
In favor of the Turing-machine model, one can say that 
it's desirable to use a finite-state abstraction for a finite­
state machine. Moreover, the Turing machine's simplicity 
and economy of description are attractive. Furthermore, 
it is universal in two 

equivalent to a Turing machine! However, a RAM that 
does not have multiplication as a fundamental operation 
is polynomially equivalent to a Turing machine. 

Real-number model-pros and cons 
What are the advantages of the real-number model? Be­
cause physicists generally assume a continuum, their 
mathematical models are often continuous, employing the 
domain of the real (and complex) numbers. It seems 
natural, therefore, to use the real numbers in analyzing 
the numerical solution of continuous models on a digital 
computer. 

If we leave aside the possibility of numerical insta­
bility, computational complexity in the real-number model 
is the same as it is for fixed-precision, floating-point 
arithmetic. Therefore the real-number model is predictive 
of running times for scientific computations. Studying 
computational complexity in the real-number model has 
led to new, superior methods for doing a variety of scien­
tific calculations. 

Another reason for using the real-number model is 
that it makes available the full power of continuous 
mathematics. I give an example below, when I discuss a 
result on non-computable numbers and its possible impli­
cations for physical theories. With the real-number model 

and the techniques of analy­
sis (that is to say, the mathe­senses: First is the Church­

Turing thesis, which states 
that what a Turing machine 
can compute may be consid­
ered a universal definition 
of computability. (Comput­
ability on a Turing machine 

"The Turing model is fundamentally 
inadequate for giving a foundation to the 
theory of modem scientific computation." 

matics of continuous func­
tions), this result is estab­
lished in about a page. With 
the Turing-machine model, 
by contrast, the proof re-

is equivalent to comput-
ability in the lambda calculus, a logical system formulated 
by Alonzo Church in 1936.) Although one cannot prove 
the Church-Turing thesis, it appeals to our intuitive 
notion of computability. 

There is also a second sense in which the Turing 
machine is universal: All "reasonable" machines are poly­
nomially equivalent to Turing machines. Informally, this 
means that if the minimal time to compute an output on 
a Turing machine is T(n)for an input of size n and if the 
minimal time to compute an output on any other machine 
is S(n), then T does not grow faster than a power of S. 
Therefore, one might as well use the Turing machine as 
the model of computation. I am, however, not convinced 
of the assertion that all reasonable machines are polyno­
mially equivalent to Turing machines, but I'll defer my 
critique for the moment. 

What are the disadvantages of the Turing-machine 
model? I believe it is not natural to use such a discrete 
model in conjunction with continuous mathematical mod­
els. Furthermore, estimated running times on a Turing 
machine are not predictive of scientific computation on 
digital computers. One reason for this is that scientific 
computation is usually done with fixed-precision floating­
point arithmetic, so that the cost of arithmetic operations 
is independent of the size of the operands. Turing-machine 
operations, by contrast, depend on the sizes of numbers. 

Finally, there are interesting computational models 
that are not polynomially equivalent to the Turing-ma­
chine model. Consider the example of a random-access 
machine in which multiplication is a basic operation and 
memory access, multiplication, and addition can be per­
formed at unit cost. Such machines go by the ungainly 
acronym UMRAM. This seems like a reasonable abstrac­
tion of a digital computer, in which multiplication and 
addition on fixed-precision floating point numbers cost 
about the same. But the UMRAM is not polynomially 

40 MAY 1999 PHYSICS TODAY 

quires a substantial part of 
a monograph. 

The argument for using the power of analysis was 
already made in 1948 by John von Neumann, one of the 
leading mathematical physicists of the century and a 
father of the digital computer. In his Hixon Symposium 
lecture, von Neumann argued for a "more specifically 
analytical theory of automata and of information." He said: 

There exists today a very elaborate system of 
formal logic, and specifically, of logic as applied 
to mathematics. This is a discipline with many 
good sides, but also serious weaknesses. . . . 
Everybody who has worked in formal logic will 
confirm that this is one of the technically most 
refractory parts of mathematics. The reason for 
this is that it deals with rigid, aU-or-none con­
cepts, and has very little contact with the con­
tinuous concept of the real or of the complex 
number, that is, with mathematical analysis. Yet 
analysis is the technically most successful and 
best-elaborated part of mathematics. . . . The 
theory of automata, of the digital, aU-or-none 
type as discussed up to now, is certainly a chap­
ter in formal logic.5 

We may adopt these observations, mutatis mutandis, as 
an argument for the real-number model. Recently, Blum 
and coauthors6 have argued for the real-number model, 
asserting that "the Turing model ... is fundamentally 
inadequate for giving . . . a foundation to the theory of 
modern scientific computation, where most of the algo­
rithms .. . are real-number algorithms." 

Against the real-number model, one can point out 
that digital representations of real numbers do not exist 
in the real world. Even a single irrational real number is 
an infinite, nonrepeating decimal that requires infinite 
resources to represent exactly. We say that the real-num­
ber model is not finitistic. But neither is the Turing-ma­
chine model, because it utilizes an unbounded tape. It is 



therefore potentially infinite. Nevertheless, the TUring­
machine model, because it is unbounded but discrete, is 
less infinite than the real-number model. It would be 
attractive to have a finite model of computation. There 
are finite models, such as circuit models and linear 
bounded automata, but they are only for special-purpose 
computation. 

Information-based complexity 
To see the real-number model in action, I indicate below 
how to formalize computational complexity issues for con­
tinuous mathematical problems and then describe a few 
recent results. To motivate the concepts, I choose the 
example of d-dimensional integration, because of its im­
portance in fields ranging from physics to finance . I will 
touch briefly on the case 

intractable. In fact, many other combinatorial problems 
are conjectured to be intractable. This is a famous un­
solved issue in computer science. 

Many problems in scientific computation that involve 
multivariate functions turn out to be intractable in the 
worst-case setting; their complexity grows exponentially 
with the number of variables. Among the intractable 
problems are partial differential and integral equations/ 
nonlinear optimization,8 nonlinear equations,9 and func­
tion approximation10. 

One can sometimes get around the curse of dimen­
sionality by assuming that the function obeys a more 
stringent global condition than simply belonging to F,.. If, 
for example, one assumes that a function and its con­
straints are convex, then its nonlinear optimization re-

quires only on the order of 
d = oo, that is to say, path 
integrals. 

Suppose we want to 
compute the integral of a 
real-valued function f of d 
variables over the unit cube 
in d dimensions. Typically, 

Information-based complexity assumes 
that the information is partial, 

contaminated, and priced. 

log(l /e) evaluations of the 
function. 8 

In general, information­
based complexity assumes 
that the information con­
cerning the mathematical 

we have to settle for com-
puting a numerical approximation with some error s < 1. 
To guarantee an s-approximation, we need some global 
information about the integrand. We assume, for example, 
that this class of integrands has smoothness r. One way 
of defining such a class is to let F,. be the class of those 
functions whose derivatives, up through order r, are uni­
formly bounded. 

A real function of a real variable cannot be entered 
into a digital computer. Therefore, we evaluate the func­
tion at a finite number of points, calling that set of values 
"the information" about f. An algorithm then combines 
these function values into a number that approximates 
the integral. 

In the worst case, we guarantee an error of at most 
s for every f in F,.. The computational complexity is the 
least cost of computing the integral to within s for every 
such f. We charge one unit for every arithmetic operation 
and comparison, and c units for every function evaluation. 
Typically, c » 1. I want to stress that the complexity 
depends on the problem and on s, but not on the algorithm. 
Every possible algorithm, whether or not it is known, and 
all possible points at which the integrand is evaluated, 
are permitted to compete when we consider the least cost. 

Nikolai Bakhvalov showed in 1959 that the complex­
ity of our integration problem is of order s-dtr . For r = 0, 
with no continuous derivatives, the complexity is infinite; 
that is to say, it is impossible to solve the problem to 
within s . But even for any positive r , the complexity 
increases exponentially with d, and we say that the 
problem is "computationally intractable." 

The curse of dimensionality 
That kind of intractability is sometimes called the "curse 
of dimensionality." Very large numbers of dimensions 
occur in practice. In mathematical finance, d can be the 
number of months in a 30-year mortgage. 

Let us compare our d-dimensional integration prob­
lem with the Traveling Salesman Problem, a well-known 
example of a discrete combinatorial problem. The input is 
the location of n cities and the desired output is the 
minimal route that includes them all. The city locations 
are usually represented by a finite number of bits. There­
fore, the input can be exactly entered into a digital 
computer. The complexity of this combinatorial problem 
is unknown, but is conjectured to be exponential in the 
number of cities, rendering the problem computationally 

model is partial, contami­
nated, and priced. In our in­

tegration example, the mathematical input is the inte­
grand and the information is a finite set offunction values. 
The information is partial because the integral cannot be 
recovered from the function values . For a partial differ­
ential equation, the mathematical input would be the 
functions specifying the boundary conditions. Usually, the 
mathematical input is replaced by a finite number of 
information operations-for example, functionals on the 
mathematical input or physical measurements that are fed 
into a mathematical model. Such information operations,3.4 
in the real-number model, are permitted at cost c. 

In addition to being partial, the information is often 
contaminated, 11 for example, by measurement or rounding 
errors. If the information is partial or contaminated, one 
cannot solve the problem exactly. Finally, the information 
has a price. For example, the information needed for 
oil-exploration models is obtained by the explosive trig­
gering of shock waves . With the exception of certain 
finite-dimensional problems, such as finding roots of sys­
tems of polynomial equations and doing matrix-algebra 
calculations, the problems typically encountered in scien­
tific computation have information that is partial, con­
taminated, and priced. 

Information-based complexity theory is developed 
over abstract spaces such as Banach and Hilbert spaces, 
and the applications typically involve multivariate func­
tions. We often seek an optimal algorithm-one whose 
cost is equal or close to the complexity of the problem. 
Such endeavors have sometimes led to new methods of 
solution. 

The information level 
The reason why we can often obtain the complexity and 
an optimal algorithm for information-based complexity 
problems is that partial or contaminated information lets 
one make arguments at the information level. In combi­
natorial problems, by contrast, this information level does 
not exist, and we usually have to settle for conjectures 
and attempts to establish a hierarchy of complexities. 

A powerful tool at the information level-one that's 
not available in discrete models of computation-is the 
notion of the radius of information, denoted by R. The 
radius of information measures the intrinsic uncertainty 
of solving a problem with a given body of information. 
The smaller this radius, the better the information. An 
£-approximation can be computed if, and only if, R < s . 
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The radius depends only on the problem being solved and 
the available information; it is independent of the algo­
rithm. In every information-based complexity setting, one 
can define an R. (We've already touched on the worst-case 
setting above, and two additional settings are to come in 
the next section.) One can use R to define the "value of 
information," which I believe is preferable, for continuous 
problems, to Claude Shannon's entropy-based concept of 
"mutual information."4 

I present here a small selection of recent advances in 
the theory of information-based complexity: high-dimen­
sional integration, path integrals, and the unsolvability of 
ill-posed problems. 

Continuous multivariate problems are, in the worst­
case setting, typically intractable with regard to dimen­
sion. That is to say, their complexity grow exponentially 
with increasing number of dimensions. One can try in two 
ways to attempt to break this curse of dimensionality: 
One can replace the ironclad worst-case s-guarantee by a 
weaker stochastic assurance, or one can change the class 
of mathematical inputs. For high-dimensional integrals, 
both strategies come into play. 

Monte Carlo 
Recall that, in the worst-case setting, the complexity of 
d-dimensional integration is of order (1 fs) dlr. But the 
expected cost of the Monte Carlo method is of order (lls )2, 
independent of d. This is 
equivalent to the common 

computation costs only 1/s, much less than the classic 
Monte Carlo method. If d is modest, one can indeed 
neglect the logarithmic factor. But in financial computa­
tions with d = 360, it looks ominous. 

It was computer experiments by Spassimir Paskov4 

on various financial computations that led to the surpris­
ing conclusion that quasi-Monte Carlo always beats ordi­
nary Monte Carlo, often by orders of magnitude. Anargyros 
Papageorgiou and I have shown that with generalized 
Faure points, which form a particular kind of low-discre­
pency sequence, quasi-Monte Carlo computations can 
achieve accuracies of 1 %-which is generally good enough 
for finance-with only 170 function evaluations. 

A recent paper by Wozniakowski and Ian Sloan13 may 
explain this surprising power of quasi-Monte Carlo com­
putation. They observe that many problems of mathemati­
cal finance are highly non-isotropic; that is to say, some 
dimensions are much more important than others . This 
is due, in part, to the discounted value of future money. 
They prove the existence of a quasi-Monte Carlo method 
whose worst-case cost is s-P, independent of d, where p is 
no bigger than 2. 

The quasi-Monte Carlo method also looks promising 
for problems in areas other than mathematical finance. 
For example, Papageorgiou and I have reported14 test 
results on a model integration problem15 suggested by 
integration problems in physics. Once again, quasi-Monte 

Carlo outperformed tradi­
tional Monte Carlo by a 

knowledge among physic­
sists that the error of a 
Monte Carlo simulation 
decreases like n-112. This 
expression for the cost 
holds even if r = 0. But 

There is no free lunch. Monte Carlo 
computation carries only a stochastic 

assurance of small error. 

large factor, for d as large 
as 100. 

Let me end this dis­
cussion with a caveat. 
There are many problems 
for which it has been es­
tablished that randomiza­there is no free lunch. 

Monte Carlo computation carries only a stochastic assur­
ance of small error. 

Another stochastic situation is the average-case set­
ting. Unlike Monte Carlo randomization, this is a deter­
ministic setting with an a priori probability measure on 
the space of mathematical inputs. The guarantee is only 
that the expected error with respect to this measure is at 
most s and that the complexity is the least expected cost. 

What is the complexity of integration in the average­
case setting and where should the integrand be evaluated? 
This problem was open for some 20 years until it was 
solved by Wozniakowski in 1991. Even for the least smooth 
case r = 0, he proved that the average complexity is of 
order 

8 -1 (log 8 -1 )<d-1)/2 

and that the integrand should be evaluated at the points 
of a "low discrepancy sequence." Many such sequences are 
known in discrepancy theory, a much studied branch of 
number theory. Roughly speaking, a set of points has low 
discrepancy if a rather small number of points is distrib­
uted as uniformly as possible in the unit cube in d 
dimensions. 

The integral of f is approximated by 
n 

1 - 'IJ (t;). 
n 

i=l 

In Monte Carlo computations, the points t; are chosen 
from a random distribution. If they constitute a low-dis­
crepancy sequence, it is called a quasi-Monte Carlo com­
putation.12 If we ignore the logarithmic factor in Wozniak­
owski's theorem, we see that a quasi-Monte Carlo 
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tion does not break intractability. One such instance, as 
shown by Greg Wasilkowski, is the problem of function 
approximation.3 How to characterize those problems for 
which randomization does breaks intractability remains 
an open question. 

Path integrals 
A new area of research of particular interest for physics 
is the complexity of path integrals.16 One can define a 
path integral 

S(f) = J f(x) J.L(dx), 
X 

where J.L is a probability measure on an infinite-dimen­
sional space X. Path integrals find numerous applications 
in quantum field theory, continuous financial mathemat­
ics, and the solution of partial differential equations. To 
compute an ~: - approximation to a path integral, the usual 
method is to approximate the infinite-dimensional integral 
by one of finite dimension, calculated by Monte Carlo. 

Here I briefly describe some very recent work on the 
complexity of path integral computation by Wasilkowski, 
Wozniakowski, and Leszek Plaskota. They considered a 
new algorithm for certain Feynman-Kac path integrals 
that concern the solution of the heat equation 

a z(u, t) 1 a2 z(u ,t) 
_a_t_ = 2 au2 + V(u) z(u, t), where z(u,O) = y(u) , 

with the Feynman-Kac integral 



t 

z(u, t) = J y(x(t) + u) exp <J V(x(s) + u) ds) w(dx), 

c 0 

where V is a potential function, y is an initial condition 
function, C is the space of continuous functions, and w is 
its Wiener measure. If V is sufficently smooth and y is 
constant, Alexandre Chorin's 1973 Monte Carlo algorithm 
yields a cost of e-25 for stochastic assurance that the error 
is no more than e. 

By contrast, the new algorithm is deterministic. Its 
cost is only e-025 . And, for that bargain-basement price, 
one even gets a worst-case guarantee rather than just a 
stochastic assurance. But the new algorithm does have a 
drawback. It requires the calculation of certain coefficients 

condition that is not twice differentiable are examples of 
problems whose solution is given by an unbounded linear 
operator. Werschulz assumed that the function f (which, 
for a differential equation, might be the initial condition) 
cannot be entered into a digital computer. So he discretized 
f by evaluating it at a finite number of points. Werschulz 
proved that, if the problem is ill-posed, it is impossible to 
compute an t:-approximation to the solution at finite cost 
for any e, no matter how large. Thus the problem is 
unsolvable, which is a much stronger result than mere 
noncomputability. 

But the best is yet to come. The notion of an un­
bounded linear operator is a worst-case concept. In infor­
mation-based complexity, however, it is natural to consider 
average behavior. Werschulz places a measure on the 

inputs-for example, the 
initial conditions. He says 

given by weighted inte­
grals. So one might say 
there's a precomputation 
cost that is not included in 
the advertised price of the 
algorithm. 

The best is yet to come. a problem is well-posed, on 
average, if the expectation 
of Lf with respect to this 

Leaving that aside, e-0·25 is an upper bound on the 
complexity of the problem. A lower bound has also been 
established and, for certain classes, the two bounds are 
essentially the same. So the complexity of the Feynman­
Kac path integral problem is known and the new algo­
rithm is essentially optimal. The results are, in fact, more 
general than I've indicated here. I just want to give the 
reader a taste of this work. 

Ill-posed problems 
As the final example, we look at ill-posed problems from 
the viewpoint of computability theory and information­
based complexity, to show the power of analysis at work. 
In 1988, Marian Pour-El and Ian Richards17 established 
what Penrose has called "a rather startling result." Con­
sider a wave equation for which the data provided at an 
initial time determines the solution at all later times. 
Then there exist computable initial conditions with the 
property that at a later time the field is not computable. 
A similar result holds for the backward heat equation. 
Both of these cases are examples of unbounded linear 
transformations, and they illustrate a theorem that tells 
us that an unbounded linear transformation can take 
computable inputs into non-computable outputs. 

Pour-El and Richards devoted a large part of their 
monograph to proving this theorem by means of com­
putability theory. An analogous result was established 
by Arthur Werschulz ,18 by information-based complex­
ity theory over the real numbers. Werschulz's proof, 
which is only about a page long, illustrates the power of 
analysis. As we shall see, his approach has several other 
advantages. 

The classical theory of ill-posed problems was devel­
oped by Jacques Hadamard a century ago. Roughly speak­
ing, a problem is ill-posed if small changes in the problem's 
specification can cause large changes in the solution. 
Hadamard felt there was something inherently wrong with 
trying to solve such problems. Given an ill-posed problem, 
one should attempt to reformulate it. There are, however, 
many important ill-posed problems that must be con­
fronted in practice- for example, in remote sensing and 
computational vision. 

Suppose we want to compute Lf, where L is a linear 
operator on the function f. The operator is said to be 
unbounded if, roughly speaking, the size of Lfis arbitrarily 
bigger than that of{, for some f. It is well known that Lf 
is ill-posed if, and only if, L is unbounded. The backward 
heat equation and the wave equation with an initial 

measure is finite. Then it 
can be shown that every ill-posed problem is well-posed, 
on average, for every Gaussian measure and therefore 
solvable, on average.4 So we see that the unsolvability of 
ill-posed problems is a worst-case phenomenon. It melts 
away, on average, for reasonable measures. 

I've tried here to provide a taste of some of the 
achievements of information-based complexity theory with 
the real-number model of computation. I invite the reader 
to look at some of the monographs cited in the references 
for other results and numerous open problems. 

My research reported here was supported in part by the National 
Science Foundation and the Alfred P Sloan Foundation. I appre· 
ciated the comments of Jerry Altzman, Anargyros Papageor· 
giou,Lee Segel, Arthur Werschulz, and Henryk Wozniakowski on 
the manuscript. 
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