A CONTINUOUS MODEL OF
COMPUTATION

A central dogma of com-
puter science is that the

Turing-machine model is the
appropriate abstraction of a
digital computer. Physicists
who’ve thought about the
matter also seem to favor the
Turing-machine model. For
example, Roger Penrose de-
voted some 60 pages of a book! to a description of this
abstract model of computation and its implications. I argue
here that physicists should consider the real-number
model of computation as more appropriate and useful for
scientific computation.

First, I introduce the four “worlds” that play a role
here. Above the horizontal line in the diagram on this page
are two real worlds: the world of physical phenomena and
the computer world in which simulations are performed.
Below them are represented two formal worlds: a mathe-
matical model of some physical phenomenon and a model of
computation that is an abstraction of a physical computer.
We get to choose both the mathematical model and the model
of computation. What type of models should we choose?

The physicist often chooses a continuous mathemati-
cal model for the
phenomenon un-
der consideration.
Continuous mod-
els range from the
dynamical sys-
tems of classical
physics to the op-
erator equations
and path inte-
grals of quantum
mechanics. These
models are based on the real numbers (as distinguished
from the subset of rational numbers). The real numbers
are, of course, an abstraction. It takes an infinite number
of bits to represent a single real number. (A rational
number, by contrast, requires only a finite number of bits.)
But infinitely many bits are not available in the universe.
One uses the continuous domain of the real numbers
because it is a powerful and useful construct. Let us accept
that continuous models are widely used in mathematical
physics, and that they will continue to occupy that role
for the foreseeable future. But the computer is a finite-
state machine. What should we do when the continuous
mathematical model meets the finite-state machine?

In the next section I compare and contrast two models
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Physicists should consider an alternative
to the Turing-machine model of
computation.
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of computation: the Turing-
machine and real-number
models. In the interest of full
disclosure, I must tell you
that I've always used the
real-number model in my
work as a computer scientist.
But I do my best here to
present balanced arguments.
Then I show how the real-number model is used in the
study of the computational complexity of continuous
mathematical models. (Computational complexity is a
measure of the minimal computational resources required
to solve a mathematically posed problem.) This is the
province of a branch of complexity theory called informa-
tion-based complexity, and what follows is intended to
demonstrate the power of this theory.

Two models of computation

Although many readers are familiar with the Turing-ma-
chine model I start by describing it briefly. Then, after
describing the real-number model, I will discuss the pros
and cons of these two models.

Alan Turing, one of the intellectual giants of the
twentieth century,
defined his ma-
chine model to es-
tablish the unsolv-
ability of David
Hilbert’'s Entscheid-
ungsproblem,? the
problem of finding
an algorithm for
deciding (ent-
scheiden, in Ger-
man) whether any
given mathematical proposition is true or false. The Turing
machine is a gedankengadget employing a tape of un-
bounded length, divided into sequential squares, each of
which is either blank or contains a single mark. For any
particular input, the resulting calculation and output are
finite; that is to say, the tape is blank beyond a certain
point. The machine’s reading head reads one square at a
time and, after making or erasing a mark, moves one
square to the left or right. The machine has a finite number
of internal states. Given its initial state and the input
sequence on the tape, the machine changes its state and the
head prints a symbol and moves one square. Finally, the
machine decides when to halt.

We turn now to a very brief description of the real-
number model; a precise formulation may be found in the
literature.>* The crux of this model is that one can store
and perform arithmetic operations and comparisons on
real numbers exactly and at unit cost. (For the moment,
I defer discussion of “information operations.”)

The real-number model has a long history. Alexander

puter simulation

: [Madel of computation
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Ostrowski used it in his work on the computational com-
plexity of polynomial evaluation in 1954. In the 1960s, I
used the real-number model for research on optimal it-
eration theory and Shmuel Winograd and Vélker Strassen
employed it in their work on algebraic complexity. Henryk
WozZniakowski and I used the real-number model in a 1980
monograph on information-based complexity. The 1989
formalization of the real-number model for continuous
combinatorial complexity by Lenore Blum, Michael Shub,
and Steven Smale initiated a surge of research on com-
putation over the real numbers.

Both models are abstractions of real digital comput-
ers. Of the Turing-machine model, Penrose wrote, “It is
the unlimited nature of the input, calculation space, and
output which tells us that we are considering only a
mathematical idealization.” Which abstraction to use de-
pends on how useful that abstraction is for a given pur-
pose. What are the pros and cons of these two models of
computation?

Turing-machine model—pros and cons

In favor of the Turing-machine model, one can say that
it’s desirable to use a finite-state abstraction for a finite-
state machine. Moreover, the Turing machine’s simplicity
and economy of description are attractive. Furthermore,
it is wuniversal in two
senses: First is the Church—
Turing thesis, which states
that what a Turing machine
can compute may be consid-
ered a universal definition
of computability. (Comput-

“The Turing model is fundamentally
inadequate for giving a foundation to the
theory of modern scientific computation.”

equivalent to a Turing machine! However, a RAM that
does not have multiplication as a fundamental operation
is polynomially equivalent to a Turing machine.

Real-number model—pros and cons

What are the advantages of the real-number model? Be-
cause physicists generally assume a continuum, their
mathematical models are often continuous, employing the
domain of the real (and complex) numbers. It seems
natural, therefore, to use the real numbers in analyzing
the numerical solution of continuous models on a digital
computer.

If we leave aside the possibility of numerical insta-
bility, computational complexity in the real-number model
is the same as it is for fixed-precision, floating-point
arithmetic. Therefore the real-number model is predictive
of running times for scientific computations. Studying
computational complexity in the real-number model has
led to new, superior methods for doing a variety of scien-
tific calculations.

Another reason for using the real-number model is
that it makes available the full power of continuous
mathematics. I give an example below, when I discuss a
result on non-computable numbers and its possible impli-
cations for physical theories. With the real-number model
and the techniques of analy-
sis (that is to say, the mathe-
matics of continuous func-
tions), this result is estab-
lished in about a page. With
the Turing-machine model,
by contrast, the proof re-

ability on a Turing machine
is equivalent to comput-
ability in the lambda calculus, a logical system formulated
by Alonzo Church in 1936.) Although one cannot prove
the Church-Turing thesis, it appeals to our intuitive
notion of computability.

There is also a second sense in which the Turing
machine is universal: All “reasonable” machines are poly-
nomially equivalent to Turing machines. Informally, this
means that if the minimal time to compute an output on
a Turing machine is T(n)for an input of size n and if the
minimal time to compute an output on any other machine
is S(n), then T does not grow faster than a power of S.
Therefore, one might as well use the Turing machine as
the model of computation. I am, however, not convinced
of the assertion that all reasonable machines are polyno-
mially equivalent to Turing machines, but I'll defer my
critique for the moment.

What are the disadvantages of the Turing-machine
model? I believe it is not natural to use such a discrete
model in conjunction with continuous mathematical mod-
els. Furthermore, estimated running times on a Turing
machine are not predictive of scientific computation on
digital computers. One reason for this is that scientific
computation is usually done with fixed-precision floating-
point arithmetic, so that the cost of arithmetic operations
is independent of the size of the operands. Turing-machine
operations, by contrast, depend on the sizes of numbers.

Finally, there are interesting computational models
that are not polynomially equivalent to the Turing-ma-
chine model. Consider the example of a random-access
machine in which multiplication is a basic operation and
memory access, multiplication, and addition can be per-
formed at unit cost. Such machines go by the ungainly
acronym UMRAM. This seems like a reasonable abstrac-
tion of a digital computer, in which multiplication and
addition on fixed-precision floating point numbers cost
about the same. But the UMRAM is not polynomially
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quires a substantial part of
a monograph.

The argument for using the power of analysis was
already made in 1948 by John von Neumann, one of the
leading mathematical physicists of the century and a
father of the digital computer. In his Hixon Symposium
lecture, von Neumann argued for a “more specifically
analytical theory of automata and of information.” He said:

There exists today a very elaborate system of

formal logic, and specifically, of logic as applied

to mathematics. This is a discipline with many

good sides, but also serious weaknesses.

Everybody who has worked in formal logic w111

confirm that this is one of the technically most

refractory parts of mathematics. The reason for
this is that it deals with rigid, all-or-none con-
cepts, and has very little contact with the con-
tinuous concept of the real or of the complex
number, that is, with mathematical analysis. Yet
analysis is the technically most successful and
best-elaborated part of mathematics. . . . The
theory of automata, of the digital, all-or-none
type as discussed up to now, is certainly a chap-

ter in formal logic.?

We may adopt these observations, mutatis mutandis, as
an argument for the real-number model. Recently, Blum
and coauthors® have argued for the real-number model,
asserting that “the Turing model . . . is fundamentally
inadequate for giving . . . a foundation to the theory of
modern scientific computation, where most of the algo-
rithms . . . are real-number algorithms.”

Against the real-number model, one can point out
that digital representations of real numbers do not exist
in the real world. Even a single irrational real number is
an infinite, nonrepeating decimal that requires infinite
resources to represent exactly. We say that the real-num-
ber model is not finitistic. But neither is the Turing-ma-
chine model, because it utilizes an unbounded tape. It is



therefore potentially infinite. Nevertheless, the Turing-
machine model, because it is unbounded but discrete, is
less infinite than the real-number model. It would be
attractive to have a finite model of computation. There
are finite models, such as circuit models and linear
bounded automata, but they are only for special-purpose
computation.

Information-based complexity

To see the real-number model in action, I indicate below
how to formalize computational complexity issues for con-
tinuous mathematical problems and then describe a few
recent results. To motivate the concepts, I choose the
example of d-dimensional integration, because of its im-
portance in fields ranging from physics to finance. I will
touch briefly on the case
d =00, that is to say, path
integrals.

Suppose we want to
compute the integral of a
real-valued function f of d
variables over the unit cube

Information-based complexity assumes
that the information is partial,
contaminated, and priced.

intractable. In fact, many other combinatorial problems
are conjectured to be intractable. This is a famous un-
solved issue in computer science.

Many problems in scientific computation that involve
multivariate functions turn out to be intractable in the
worst-case setting; their complexity grows exponentially
with the number of variables. Among the intractable
problems are partial differential and integral equations,’
nonlinear optimization,® nonlinear equations,” and func-
tion approximation?®.

One can sometimes get around the curse of dimen-
sionality by assuming that the function obeys a more
stringent global condition than simply belonging to F,. If,
for example, one assumes that a function and its con-
straints are convex, then its nonlinear optimization re-
quires only on the order of
log(1/e) evaluations of the
function.®

In general, information-
based complexity assumes
that the information con-
cerning the mathematical

in d dimensions. Typically,
we have to settle for com-
puting a numerical approximation with some error ¢ < 1.
To guarantee an e-approximation, we need some global
information about the integrand. We assume, for example,
that this class of integrands has smoothness » One way
of defining such a class is to let F, be the class of those
functions whose derivatives, up through order 7 are uni-
formly bounded.

A real function of a real variable cannot be entered
into a digital computer. Therefore, we evaluate the func-
tion at a finite number of points, calling that set of values
“the information” about f. An algorithm then combines
these function values into a number that approximates
the integral.

In the worst case, we guarantee an error of at most
¢ for every f in F,. The computational complexity is the
least cost of computing the integral to within ¢ for every
such f. We charge one unit for every arithmetic operation
and comparison, and ¢ units for every function evaluation.
Typically, ¢ > 1. I want to stress that the complexity
depends on the problem and on &, but not on the algorithm.
Every possible algorithm, whether or not it is known, and
all possible points at which the integrand is evaluated,
are permitted to compete when we consider the least cost.

Nikolai Bakhvalov showed in 1959 that the complex-
ity of our integration problem is of order /", For r = 0,
with no continuous derivatives, the complexity is infinite;
that is to say, it is impossible to solve the problem to
within e. But even for any positive r, the complexity
increases exponentially with d, and we say that the
problem is “computationally intractable.”

The curse of dimensionality

That kind of intractability is sometimes called the “curse
of dimensionality.” Very large numbers of dimensions
occur in practice. In mathematical finance, d can be the
number of months in a 30-year mortgage.

Let us compare our d-dimensional integration prob-
lem with the Traveling Salesman Problem, a well-known
example of a discrete combinatorial problem. The input is
the location of n cities and the desired output is the
minimal route that includes them all. The city locations
are usually represented by a finite number of bits. There-
fore, the input can be exactly entered into a digital
computer. The complexity of this combinatorial problem
is unknown, but is conjectured to be exponential in the
number of cities, rendering the problem computationally

model is partial, contami-
nated, and priced. In our in-
tegration example, the mathematical input is the inte-
grand and the information is a finite set of function values.
The information is partial because the integral cannot be
recovered from the function values. For a partial differ-
ential equation, the mathematical input would be the
functions specifying the boundary conditions. Usually, the
mathematical input is replaced by a finite number of
information operations—for example, functionals on the
mathematical input or physical measurements that are fed
into a mathematical model. Such information operations,?*
in the real-number model, are permitted at cost c.

In addition to being partial, the information is often
contaminated,™ for example, by measurement or rounding
errors. If the information is partial or contaminated, one
cannot solve the problem exactly. Finally, the information
has a price. For example, the information needed for
oil-exploration models is obtained by the explosive trig-
gering of shock waves. With the exception of certain
finite-dimensional problems, such as finding roots of sys-
tems of polynomial equations and doing matrix-algebra
calculations, the problems typically encountered in scien-
tific computation have information that is partial, con-
taminated, and priced.

Information-based complexity theory is developed
over abstract spaces such as Banach and Hilbert spaces,
and the applications typically involve multivariate func-
tions. We often seek an optimal algorithm—one whose
cost is equal or close to the complexity of the problem.
Such endeavors have sometimes led to new methods of
solution.

The information level

The reason why we can often obtain the complexity and
an optimal algorithm for information-based complexity
problems is that partial or contaminated information lets
one make arguments at the information level. In combi-
natorial problems, by contrast, this information level does
not exist, and we usually have to settle for conjectures
and attempts to establish a hierarchy of complexities.

A powerful tool at the information level—one that’s
not available in discrete models of computation—is the
notion of the radius of information, denoted by R. The
radius of information measures the intrinsic uncertainty
of solving a problem with a given body of information.
The smaller this radius, the better the information. An
e-approximation can be computed if, and only if, R<e.
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The radius depends only on the problem being sclved and
the available information; it is independent of the algo-
rithm. In every information-based complexity setting, one
can define an R. (We've already touched on the worst-case
setting above, and two additional settings are to come in
the next section.) One can use R to define the “value of
information,” which I believe is preferable, for continuous
problems, to Claude Shannon’s entropy-based concept of
“mutual information.”

I present here a small selection of recent advances in
the theory of information-based complexity: high-dimen-
sional integration, path integrals, and the unsolvability of
ill-posed problems.

Continuous multivariate problems are, in the worst-
case setting, typically intractable with regard to dimen-
sion. That is to say, their complexity grow exponentially
with increasing number of dimensions. One can try in two
ways to attempt to break this curse of dimensionality:
One can replace the ironclad worst-case e-guarantee by a
weaker stochastic assurance, or one can change the class
of mathematical inputs. For high-dimensional integrals,
both strategies come into play.

Monte Carlo

Recall that, in the worst-case setting, the complexity of
d-dimensional integration is of order (1/e)?". But the
expected cost of the Monte Carlo method is of order (1/g)?,
independent of d. This is
equivalent to the common
knowledge among physic-
sists that the error of a
Monte Carlo simulation
decreases like n1/2, This
expression for the cost

There is no free lunch. Monte Carlo
computation carries only a stochastic
assurance of small error.

computation costs only 1/e, much less than the classic
Monte Carlo method. If d is modest, one can indeed
neglect the logarithmic factor. But in financial computa-
tions with d = 360, it looks ominous.

It was computer experiments by Spassimir Paskov*
on various financial computations that led to the surpris-
ing conclusion that quasi-Monte Carlo always beats ordi-
nary Monte Carlo, often by orders of magnitude. Anargyros
Papageorgiou and I have shown that with generalized
Faure points, which form a particular kind of low-discre-
pency sequence, quasi-Monte Carlo computations can
achieve accuracies of 1%—which is generally good enough
for finance—with only 170 function evaluations.

A recent paper by Wozniakowski and Ian Sloan!® may
explain this surprising power of quasi-Monte Carlo com-
putation. They observe that many problems of mathemati-
cal finance are highly non-isotropic; that is to say, some
dimensions are much more important than others. This
is due, in part, to the discounted value of future money.
They prove the existence of a quasi-Monte Carlo method
whose worst-case cost is 7, independent of d, where p is
no bigger than 2.

The quasi-Monte Carlo method also looks promising
for problems in areas other than mathematical finance.
For example, Papageorgiou and I have reported!* test
results on a model integration problem!® suggested by
integration problems in physics. Once again, quasi-Monte
Carlo outperformed tradi-
tional Monte Carlo by a
large factor, for d as large
as 100.

Let me end this dis-
cussion with a caveat.
There are many problems

holds even if r= 0. But
there is no free lunch.
Monte Carlo computation carries only a stochastic assur-
ance of small error.

Another stochastic situation is the average-case set-
ting. Unlike Monte Carlo randomization, this is a deter-
ministic setting with an a priori probability measure on
the space of mathematical inputs. The guarantee is only
that the expected error with respect to this measure is at
most & and that the complexity is the least expected cost.

What is the complexity of integration in the average-
case setting and where should the integrand be evaluated?
This problem was open for some 20 years until it was
solved by WozZniakowski in 1991. Even for the least smooth
case r = 0, he proved that the average complexity is of
order

8_1 (IOg 8_1 )(d~1)/2

and that the integrand should be evaluated at the points
of a “low discrepancy sequence.” Many such sequences are
known in discrepancy theory, a much studied branch of
number theory. Roughly speaking, a set of points has low
discrepancy if a rather small number of points is distrib-
uted as uniformly as possible in the unit cube in d
dimensions.

The integral of [ is approximated by

1 n
W Ef(ti)-

In Monte Carlo computations, the points ¢; are chosen
from a random distribution. If they constitute a low-dis-
crepancy sequence, it is called a quasi-Monte Carlo com-
putation.'? If we ignore the logarithmic factor in Wozniak-
owski’s theorem, we see that a quasi—-Monte Carlo
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for which it has been es-
tablished that randomiza-
tion does not break intractability. One such instance, as
shown by Greg Wasilkowski, is the problem of function
approximation.® How to characterize those problems for
which randomization does breaks intractability remains
an open question.

Path integrals

A new area of research of particular interest for physics
is the complexity of path integrals.!® One can define a
path integral

S( = | fix) w(dx),
X

where w is a probability measure on an infinite-dimen-
sional space X. Path integrals find numerous applications
in quantum field theory, continuous financial mathemat-
ics, and the solution of partial differential equations. To
compute an e-approximation to a path integral, the usual
method is to approximate the infinite-dimensional integral
by one of finite dimension, calculated by Monte Carlo.

Here I briefly describe some very recent work on the
complexity of path integral computation by Wasilkowski,
WoZniakowski, and Leszek Plaskota. They considered a
new algorithm for certain Feynman—Kac path integrals
that concern the solution of the heat equation

dz(u,t) 1 0%z(ut) 0
=9 o + V() 2(u, t), where z(u,0) =y(u),

with the Feynman-Kac integral



t
2, 1) = | yxt) +u) exp (| Vix(s) + ) ds) w(dx),
C 0

where V is a potential function, y is an initial condition
function, C is the space of continuous functions, and w is
its Wiener measure. If V is sufficently smooth and y is
constant, Alexandre Chorin’s 1973 Monte Carlo algorithm
yields a cost of 725 for stochastic assurance that the error
is no more than e.

By contrast, the new algorithm is deterministic. Its
cost is only &2, And, for that bargain-basement price,
one even gets a worst-case guarantee rather than just a
stochastic assurance. But the new algorithm does have a
drawback. It requires the calculation of certain coefficients
given by weighted inte-
grals. So one might say
there’s a precomputation
cost that is not included in
the advertised price of the

The best is yet to come.

condition that is not twice differentiable are examples of
problems whose solution is given by an unbounded linear
operator. Werschulz assumed that the function f (which,
for a differential equation, might be the initial condition)
cannot be entered into a digital computer. So he discretized
f by evaluating it at a finite number of points. Werschulz
proved that, if the problem is ill-posed, it is impossible to
compute an e-approximation to the solution at finite cost
for any &, no matter how large. Thus the problem is
unsolvable, which is a much stronger result than mere
noncomputability.

But the best is yet to come. The notion of an un-
bounded linear operator is a worst-case concept. In infor-
mation-based complexity, however, it is natural to consider
average behavior. Werschulz places a measure on the
inputs—for example, the
initial conditions. He says
a problem is well-posed, on
average, if the expectation
of Lf with respect to this

algorithm.

Leaving that aside, %25 is an upper bound on the
complexity of the problem. A lower bound has also been
established and, for certain classes, the two bounds are
essentially the same. So the complexity of the Feynman—
Kac path integral problem is known and the new algo-
rithm is essentially optimal. The results are, in fact, more
general than I've indicated here. I just want to give the
reader a taste of this work.

Ill-posed problems

As the final example, we look at ill-posed problems from
the viewpoint of computability theory and information-
based complexity, to show the power of analysis at work.
In 1988, Marian Pour-El and Ian Richards!’ established
what Penrose has called “a rather startling result.” Con-
sider a wave equation for which the data provided at an
initial time determines the solution at all later times.
Then there exist computable initial conditions with the
property that at a later time the field is not computable.
A similar result holds for the backward heat equation.
Both of these cases are examples of unbounded linear
transformations, and they illustrate a theorem that tells
us that an unbounded linear transformation can take
computable inputs into non-computable outputs.

Pour-El and Richards devoted a large part of their
monograph to proving this theorem by means of com-
putability theory. An analogous result was established
by Arthur Werschulz,!® by information-based complex-
ity theory over the real numbers. Werschulz’s proof,
which is only about a page long, illustrates the power of
analysis. As we shall see, his approach has several other
advantages.

The classical theory of ill-posed problems was devel-
oped by Jacques Hadamard a century ago. Roughly speak-
ing, a problem is ill-posed if small changes in the problem’s
specification can cause large changes in the solution.
Hadamard felt there was something inherently wrong with
trying to solve such problems. Given an ill-posed problem,
one should attempt to reformulate it. There are, however,
many important ill-posed problems that must be con-
fronted in practice—for example, in remote sensing and
computational vision.

Suppose we want to compute Lf, where L is a linear
operator on the function f. The operator is said to be
unbounded if, roughly speaking, the size of Lf is arbitrarily
bigger than that of £, for some f. It is well known that Lf
is ill-posed if, and only if, L is unbounded. The backward
heat equation and the wave equation with an initial

measure is finite. Then it
can be shown that every ill-posed problem is well-posed,
on average, for every Gaussian measure and therefore
solvable, on average.? So we see that the unsolvability of
ill-posed problems is a worst-case phenomenon. It melts
away, on average, for reasonable measures.

I've tried here to provide a taste of some of the
achievements of information-based complexity theory with
the real-number model of computation. I invite the reader
to look at some of the monographs cited in the references
for other results and numerous open problems.

My research reported here was supported in part by the National
Science Foundation and the Alfred P. Sloan Foundation. I appre-
ciated the comments of Jerry Altzman, Anargyros Papageor-
giou,Lee Segel, Arthur Werschulz, and Henryk Wozniakowski on
the manuscript.
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