
TRAPPED PLASMAS WITH A 
SINGLE SIGN OF CHARGE 

D espite their reputation, 
not all plasmas are dif­

ficult to confine. In fact, one 
kind of plasma can be kept 
for long times in a simple 
apparatus by means of static 
electric and magnetic fields. 
It is the kind of plasma that 
consists exclusively of parti­
cles with a single sign of 

Plasma crystal is not a fanciful oxymoron, 
but something you can actually make 

with an easy-to-confine, long-lived 
nonneutral plasma. 

bulent evolution can lead to 
another kind of crystal, in 
which magnetic-field-aligned 
vortical structures are an­
nealed by the turbulence to 
form a regular pattern. 

Thomas M. O'Neil 
Although there are other 

fascinating phenomena ex­
hibited by nonneutral plas-

charge. Examples include pure electron plasmas, positive 
ion plasmas of one or more species, positron plasmas and 
even electron-antiproton plasmas-all of which have been 
realized in recent experiments. 

These unneutralized collections of charge are called 
plasmas because they behave in many ways like neutral 
plasmas, but they are much easier to confine. Indeed, in 
principle, plasmas with a single sign of charge can be 
confined forever. In practice, confinement times of days 
(and even weeks) are routinely achieved, which is one 
reason why these plasmas provide research opportunities 
that are not available with neutral plasmas. 

A closely related reason is that these unneutralized 
plasmas can be confined and also be in a state of global 
thermal equilibrium. This property may sound like it is 
trivial and shared by all plasmas, but it is not. In fact, 
neutral plasmas cannot be confined by static electric and 
magnetic fields and also be in a state of global thermal 
equilibrium. The incompatibility between confinement 
and global thermal equilibrium in the case of neutral 
plasmas is fundamentally the reason why these plasmas 
are hard to confine. When they are confined, they are 
not in a state of maximum entropy (or minimum free 
energy). There is always free energy available to drive 
instabilities of the sort that have long plagued the con­
finement of neutral plasmas. By contrast , a confined 
unneutralized plasma in a state of global thermal equi­
librium is guaranteed to be stable and quiescent. 

For theory, the possibility of using thermal equilib­
rium statistical mechanics to describe the late-time plasma 
state is a large advantage. In effect, Ludwig Boltzmann and 
Josiah Willard Gibbs solved the complicated many-body 
physics problem for us. For experiment, a system that is 
near to thermal equilibrium is more predictable and control­
lable, and the effect of small controlled deviations from 
thermal equilibrium can be studied with precision. 

Unneutralized plasmas have proven to be excellent 
subjects for well-controlled studies of a wide range of 
plasma phenomena over a wide range of parameters. For 
example, these plasmas can be cooled to the cryogenic 
temperature range without any recombination, thereby pro­
viding experimental access to novel parameter regimes, such 
as the strong correlation exhibited by Coulomb crystals. 

Surprisingly, good confinement persists even if the 
plasma is created in an initial state that is unstable, and 
violent fluidlike turbulence ensues. This early-time tur-
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mas, the focus of this article 
is on Coulomb and vortex crystals. But we begin with a 
historical outline of the field, followed by an exploration 
of the physics of plasma confinement. 

Early studies 
Dating back nearly half a century, the history of research 
on trapped clouds of unneutralized charges has roots in 
both plasma physics and atomic physics. 

In 1936, Frans Michel Penning invented the basic 
confinement configuration for use as a vacuum gauge. A 
few years later, research on nonneutral plasmas in Pen­
ning trap-like field configurations (magnetrons) became 
part of the effort to produce high-frequency power sources 
for radar in World War II. 

In the late 1960s, nonneutral plasma physics devel­
oped rapidly, borrowing techniques and ideas from tradi­
tional plasma physics.1 This development was driven 
largely by the need to produce new high-frequency power 
sources and to understand collective effects in intense 
accelerators and storage rings. The name "nonneutral 
plasma" was coined in that period. 

By the late 1970s, John Malmberg and his collabora­
tors were carrying out experiments on trapped pure elec­
tron plasmas at the University of California, San Diego. 
They made the theoretical proposition that these plasmas 
with a single sign of charge have exceptionally good 
confinement properties and might be cooled to a crystal 
state.2 

Meanwhile, atomic physicists were also trapping 
charged particles. In the 1960s, Hans Dehmelt pioneered 
the use of Penning traps for fundamental studies of 
individual particles-work for which he received the 1989 
Nobel Prize in Physics. Gradually, as the use of Penning 
traps became widespread in atomic physics and chemistry, 
some brave investigators began trapping larger and larger 
numbers of particles. Their experiments left behind the 
individual particle regime, where atomic physicists had 
traditionally been comfortable, and moved into the more 
perilous territory of plasmas and collective effects. 

In the 1980s, collaborations began and progress (par­
ticularly experimental progress) accelerated. David 
Wineland and his collaborators at the National Institute 
of Standards and Technology (NIST) in Boulder, Colorado, 
who were laser-cooling trapped clouds of ions with the 
goal of producing accurate atomic clocks, produced small 
pure ion crystals.3 Also, antimatter plasmas became avail­
able-a development that was stimulated, in part, by 
efforts to produce antihydrogen at CERN.4 Indeed, much 
of the work described here derives from fruitful collabo­
rations between atomic and plasma physicists. 
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FIGURE 1. A SCHEMATIC DRAWING of a Malmberg-Penning trap. The wall is a conducting cylinder that is divided axially into 

three sections. The central section is held at ground potential, while the two end sections are held at positive potential (to confine a 

plasma of positive charges). A uniform axial magnetic field B is also present. The plasma (shown in violet) rotates at angular frequency 

w in the region of the central grounded section and is confined radially by the magnetic field and axially by the electric fields E. 

The physics of confinement 
Figure 1 shows a schematic drawing of what is now called 
a Malmberg-Pennin~ trap. Also present is a uniform axial 
magnetic field B = Bz. Here, (r, fJ, z) is a cylindrical coor­
dinate system in which the z-axis coincides with the axis 
of the trap. 

Because the plasma is unneutralized, its space charge 
electrostatic field exerts a large force radially outward. 
To balance this force and the other radially outward forces 
(pressure and centrifugal), the plasma rotates about the 
axis of symmetry of the trap, giving rise to the inwardly 
directed Lorentz force (ev x B/ c), where vis the rotational 
velocity. In a sense, therefore, rotation through a magnetic 
field is like neutralization by a background charge-a 
useful way to think about these systems, and one that we 
return to below. 

To come to grips with the physics of confinement, we 
start by considering an ideal trap that is characterized by 
time-independent trap fields and perfect cylindrical sym­
metry. Let H be the N-particle Hamiltonian (which is 
equal in value to the total particle energy) for a system 
of nonrelativistic, classical charges that interact electro­
statically and move in the trap fields. Since it does not 
depend explicitly on time, H is a constant of the motion. 
And since His invariant under rotation, the total canonical 
angular momentum, P9, is also a constant of the motion. 

Of course, H and P9 are not exactly constant for a 
real plasma in a real trap. Not only do charges slowly 
radiate energy and angular momentum, but there are also 
neutrals, which collide with the charges and change their 
energy and angular momentum. Most important of all, 
a real trap has small field and construction errors that 
break the cylindrical symmetry and apply a small torque 
to the plasma. Nevertheless, by maintaining a good vac­
uum and by constructing the trap with a high degree of 
cylindrical symmetry, Hand P 9 can remain nearly constant 
on the timescale required for Coulomb collisions to bring 
the plasma particles into thermal equilibrium. Thus, we 
first discuss the confinement and thermal equilibrium 
states under the assumption that H and P9 are exact 
constants, and then discuss the effect of slow changes in 
these quantities. 

To the extent that H (total energy) is conserved, the 

axial confinement of the particles can be guaranteed 
simply by placing a high enough potential on the end 
cylinders. To understand the radial confinement, we in­
voke the constancy of canonical angular momentum, 

P 0 = L mv0 r j +% A 0 (r)rj , 
J 

j 

where the quantity mv0r j is the mechanical part of the 
angular momentum for the jth particle, and the quantity 
(%)Ae(r)rj is the vector potential part. The sum runs over 
all N particles in the plasma. 

For a uniform axial magnetic field, the fJ-component 
of the vector potential is Ae(r) = Br I 2. (Diamagnetic cor­
rections are negligible for the low densities and velocities 
that we have in mind here.) And for a sufficiently large 
magnetic field, the vector potential part dominates, and 
the total angular momentum reduces to the simple form 

Po ~ L ~~ r; = e:; L r;. 
j j 

Thus, the constancy of P0 implies a constraint on the 
allowed radial positions rj of the particles-a key concept 
in the physics of confinement. 

Note that this relationship remains valid even if the 
plasma undergoes complicated turbulent and collisional 
dynamics, the reason being that the collisions and other 
internal interactions conserve P0• 

A simple example illustrates the power of the con­
straint. Suppose that all the plasma particles initially 
reside inside a cylindrical region of radius 1 em-that is, 
rj :::; 1 em when t = 0 for all }-and that the conducting 
cylindrical wall is located at r = 10 em. 'lb the extent that 
the sum of r](t) is conserved, less than 1% of the particles 
can ever reach the wall at r = 10 em; more than 99% 
remain confined forever. 

By contrast, for a neutral plasma, it is the sum of 
eiJ(t) that is constant, which means that an electron and 
an ion can move to the wall together while preserving the 
sum. This is precisely what happens in electron-ion 
collisional transport and in many instabilities. 

Thermal equilibrium states 
When plasma particles remain confmed, they must come 
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FIGURE 2. How A PURE ELECTRON PLASMA 
settles into a state of thermal equilibrium, as 

observed experimentally. On the left-hand side, 
the density n(r,t) is plotted as a function of r for a 

cut through the plasma mid-plane (z = 0) for the 
three times t = 0, 3 and 10 s. On the right-hand 

side, local rotation frequency at the midplane 

1.5 ~----------;----------, 1.0 

w(r,t) is plotted for these same three times. By 
t = 10 s, the rotational flow has become nearly 

shearfree, and the density profile has evolved to 
the expected thermal equilibrium form. 

into thermal equilibrium with each other. For 
a weakly correlated plasma in which H and 
P9 are both conserved, the Boltzmann distribu­
tion takes the form 

( m J
312 

[ 1 ] f =no 27rkT exp - kT (h + wpe) , 

where h = mu2 /2 + e<f>(r,z) is the single-particle 
energy, p 9 = mu9r + eBr /2c is the single-parti­
cle canonical angular momentum and </>(r, z) is 
the mean-field electric potentiai.l·2 

The combination 

h + wp9 =; [v: + u~ + (v9 + wr)2
] 

mw2 2 eBw 2 +e<f>(r,z) ---r +--r 
2 2c 
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is the single-particle energy as viewed in a frame that 
rotates with frequency -w. (Positively "ch arged plasmas 
rotate in a negative sense relative to Bz.) 

The velocity distribution is Maxwellian in the rotating 
frame, so, from a fluid perspective, the flow is shearfree 
(rigid rotor flow). If the flow were not shearfree, viscous 
forces would produce entropy, which is impossible in a 
state of maximum entropy. 

The density distribution is determined by three po­
tentials-namely, the electric potential </>(r, z), the cen­
trifugal potential -mw2r2 12, and the potential eBwr2 / 2c. 
This last potential is associated with the electric field 
induced by rotation through the magnetic field . It is this 
potential that provides the radial confinement. 

To see that the distribution, in fact, does correspond 
to a confined plasma, note that </>(r, z) forces the distribu­
tion to be exponentially small at each end (assuming that 
the potential on the end electrodes is turned up sufficie~tly 
high) and that the potential eBwr2 I 2c forces the dlstnbu­
tion to be exponentially small at large r (assummg that 
B is sufficiently large). Of course, the conducting wall is 
assumed to be outside the radius where the distribution 
becomes exponentially small. Note, too, that such thermal 
equilibrium distributions do not correspond to confinement 
for a neutral plasma. The sign of the charge enters 
e<f>(r ,z) and eBwr2 I 2c, so confinement of electrons means 
nonconfinement of ions. 

The density normalization n0 , temperature T and 
rotation frequency w are determined by the three quanti­
ties N, H and P 9• Because effects such as radiation, 
collisions with neutrals and interaction with small field 
errors produce a slow evolution in the values of H and 
P9, the values of n 0 , T and w will slowly change w1th tlme. 

FIGURE 3 . SIDE VIEW OF A PLASMA that consists of 8 X 104 

beryllium ions in a quadratic trap potential, together with the 
best-fitting elliptical envelope. 
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If no countermeasures are taken to oppose the ambient 
torque and heating (or cooling), n0, T and w will evolve 
in such a way that the plasma will escape. 

However, counteracting torques and heating (or cool­
ing) can be applied using laser beams (or rotating field 
asymmetries) to keep H and P9 constants In this way, 
the plasma can be maintained in steady state for weeks 
at a time, or be put into some new thermal equilibrium 
state that is more convenient for a particular experiment. 

The electric potential <f>(r, z) is determined largely by 
the plasma charge density itself, so Poisson's equation 
must be solved with the charge density given by the 
thermal equilibrium density distribution. Fortunately, the 
self-consistent solutions for potential and density have a 
simple universal character.l·2 The density is nearly con­
stant out to some surface of revolution, where it drops to 
zero in a few Debye screening lengths. That length is 
given by An= (k8 T I 47rne2)lf.!, where n is the density (by 
definition, plasma is a collection of charges that is large 
compared to the Debye length). 

This general picture of the plasma is easy to under­
stand physically. In the thermal distribution, the two 
potential energy terms due to rotation are both quadratic 
in r. Suppose that the radial confinement is provided not 
by rotation through a magnetic field, but by the electro­
static field from an imaginary cylinder of uniform negative 
charge . The potential energy of a positive charge e in 
such a field would also be quadratic in r, so the two terms 
due to rotation can be interpreted as such a potential 
energy. The electric potential for a cylinder of uniform 
charge density - en_ is ¢_ = 7ren_r2, so the required choice 



for the density is -mw2 I 2 + eBw I 2c. For this choice, the 
thermal equilibrium distributions for the two systems 
differ only by a velocity shift due to rotation-that is, 
v0 --7 v0 + wr. Otherwise, the density distributions are 
identical. 

This equivalence is useful because we know what will 
happen if we put a collection of positive charges into a 
potential well produced by a cylinder of uniform neutral­
izing charge (and by the positively biased end cylinders). 
The positive charges will go to the bottom of the well, 
matching their density to that ofthe negative charge-that 
is, n(r, z) = n _. And they will fill the well out to some 
surface of revolution where the supply of charges is ex­
hausted and where the density will drop to zero. 

Figure 2, from the UCSD neutral plasma group, shows 
how a pure electron plasma settles into a state of thermal 
equilibrium through collisional transport.6 A signature of 
thermal equilibrium is shear-free rotational flow, but, for 
an arbitrary initial equilibrium, the rotation frequency is 
not uniform in r . The shears in the rotational flow give 
rise to viscous forces (due, microscopically, to collisions) 
that drive the plasma into a state of rigid rotation. We 
can see in figure 2 that, by t = 10 s, the density profile 
has evolved to the expected thermal equilibrium form, and 
that the rotation frequency has become nearly uniform. 

Detailed studies of collisionally driven transport 
across magnetic fields led the UCSD group to the discovery 
of a new transport theory.7 Nonneutral plasmas typically 
exist in a parameter regime where the cyclotron radius 
for a particle is small compared to the Debye length. In 
this regime, the new theory predicts particle and heat 
fluxes that are much larger than those predicted by 
traditional theory, but that are in good agreement with 
measurement. 

For an important class of experiments, the surface of 
revolution at which the plasma density drops to zero is a 

FIGURE 4. TIME-RESOLVED BRAGG DIFFRACTION 

PATIERN obtained by scattering laser light from a trapped 
plasma of N = 8 x 104 Be+ ions. The effect of plasma 
rotation was removed by stroboscopically imaging the 
scattered light. A body-centered cubic lattice aligned along 
the <100> axis would generate a spot at each intersection 
of the grid lines overlaid on the image. 

spheroid (an ellipse of revolution).8 Except at the 
thin surface sheath, the plasma density is uniform 
within the spheroid. In these experiments, which 
atomic physicists favor, the plasma cloud is small 
compared to the size of the trap, and the Taylor 
expansion of the trap potential is nearly quadratic 
over the region of the cloud. It is not too surprising, 
therefore, that the quadratic trap potential gives rise 
to a quadratic surface of revolution like an spheroid. 

Figure 3, from the NIST ion storage group, 
shows a side-view image of a plasma that consists 
of about 8 x 104 beryllium ions in a quadratic trap 
potential, together with the best-fitting elliptical 
surface envelope. The aspect ratio of the fitted 
ellipse (length+ diameter= 1.763) is in good agree­
ment with the aspect ratio 1.75 predicted by theory 
for the measured rotation frequency and known trap 
parameters. 

By using laser beams to manipulate the values 
of H and P0, the experimenters were able to lead 
the plasma through the full range of thermal equi­
librium states (consistent with the constraint of 
small Debye length). The measured plasma shape 
was in quantitative agreement with theory over the 
full range.5 

Theoretical analysis yields accurate, analytic 
descriptions of not only the equilibrium shape of these 
small spheroidal plasmas, but also the linear modes of 
oscillation about the equilibrium state (including all 
plasma modes, upper hybrid modes and cyclotron modes).9 

The theory for the modes, like that for the equilibrium 
shape, assumes that the Debye length is small. For the 
low-order modes checked so far, both the predicted fre­
quencies and the spatial structure of the eigenmodes are 
in excellent agreement with measurement and simula­
tion. These small spheroidal plasmas are possibly the 
best understood and best controlled plasmas currently in 
existence. 

Coulomb crystals 
Small spheroidal plasmas have been laser cooled to tem­
peratures in the range of a few millikelvins. As the 
temperature is reduced, the random kinetic energy of a 
particle becomes smaller than the Coulomb interaction 
energy between neighboring particles, and interparticle 
correlation becomes important. · First, the system of par­
ticles enters a state with the short-range order charac­
teristic of a fluid ; then it suffers a phase transition to a 
state with long-range order-that is, to a crystal state. 

A measure of the correlation strength is the coupling 
parameter r = e2 I ak8 T, where the Wigner-Seitz radius a, 
which is defined as (3 147Tn) l,jj, is essentially the interpar­
ticle spacing, and where r is the ratio of the Coulomb 
interaction energy between neighboring particles e2 I a to the 
random thermal energy for a particle k 8 T , so the Coulomb 
interactions can establish strong correlations when r » 1. 

To develop a theory for the crystal structure, we return 
to the equivalence between the thermal distribution for a 
magnetically confined plasma and a plasma that is con­
fined by a cylinder of uniform neutralizing charge. Pre­
viously, we established this equivalence for the Boltzmann 
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FIGURE 5. A SEQUENCE OF 

EXPERIMENTAL images that illustrate 
vortex merger, with intensity of 

vorticity (z-integrated electron density) 
indicated by color. The large red circle 
in the first image indicates the location 

of the wall. 

distribution, but the argument is eas­
ily extended to the Gibbs distribution.2 

As an N-particle distribution, the 
Gibbs distribution includes all infor­
mation about spatial correlations, so 
we may conclude that the microscopic 
order is the same for the two systems. 
A system of point charges in a uniform 
neutralizing background charge is 
called a one component plasma (OCP) 
and has been a favorite theoretical 
model for the study of correlation ef­
fects. For a plasma large enough that 
bulk properties predominate, we can 
simply adopt the well-known results 
for a homogeneous OCP and apply them to the magneti­
cally confined plasma. For example, it has been known 
for many years that the lowest energy state of such a 
plasma is a body-centered cubic (BCC) crystal. The lattice 
spacing is set by the density, which again is equal to that 
of the imaginary neutralizing charge-that is, 
n = n_ = Bw / 2C7Te- mw2 I 27Te2. 

Figure 4 shows a time-resolved Bragg diffraction pat­
tern, which Wayne Itano (NIST, Boulder) and his collabo­
rators obtained by scattering laser light from a spheroidal 
plasma of 8 x 104 Be+ ions. 10 The pattern from a crystal 
that rotates about the laser beam would appear as nested 
rings, but here the effect of the rotation was removed by 
stroboscopically imaging the scattered light (with a CCD 
camera). The diffraction peaks all lay on the intersections 
of a square grid, which is consistent with a single BCC 
crystal oriented so that the incident laser beam is along 
the crystal's <100> axis. An angular calibration was made, 
and the agreement between the observed and calculated 
grid spacing was within the uncertainty of the meas­
urement (about 1 %). Other crystal structures (for ex­
ample, face-centered cubic) were occasionally observed, 
but the BCC structure predominated for sufficiently 
large plasmas. 

In earlier experiments with smaller plasmas, the ions 
were observed to lie on nested surfaces of revolution.3 

Numerical studies by various groups showed that this 
shell structure is the thermal equilibrium state for smaller 
plasmas in which surface effects predominate. 11 One can 
think of a given shell as a lattice plane that has been 
deformed to follow the spheroidal surface of the plasma. 

In related experiments conducted by Herbert Walther 
and his collaborators (Max Planck Institute for Quantum 
Electronics, Garching, Germany), even smaller numbers 
of charges were confined and laser cooled in Paul (radio 
frequency) traps, and Coulomb clusters with a rich variety 
of structures were observed.12 The structures and phase 
transitions between the structures were understood by 
calculating the minimum energy states.13 

Vortex dynamics and turbulence 
Trapped nonneutral plasmas, like neutral plasmas, exhibit 
a rich variety of collective dynamics. Here, we focus on 
a particularly simple form of collective dynamics that has 
been studied with long columns of pure electron plasma. 

When a typical electron's cyclotron and axial bounce 
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frequencies are high, the associated oscillations are aver­
aged over in low-frequency motions. (Axial bouncing is 
the movement of electrons back and forth in the trap 
parallel to the magnetic field.) In this case, we can think 
of the plasma as consisting of long rods (bounce-averaged 
electrons) that move across the magnetic field with the 
Ex B drift velocity, vd = c 'il</> x ~/B . The density n(r,O,t) 

evolves under this flow field according to the continuity 
equation, and the bounce-averaged potential </> = cp(r,O,t) 

is determined, in turn, by the density through Poisson's 
equation. 

An interesting feature of these two-dimensional drift 
Poisson equations is that they are identical to the equa­
tions for the two-dimensional flow of an ideal-that is, 
incompressible and inviscid-fluid. The electric potential 
corresponds to the stream function and the density to the 
vorticity. Thus, the plasma can be used to model the 
two-dimensional flow of an ideal fluid. Surprisingly, ex­
periments with a pure electron plasma offer advantages 
over experiments with a tank of water! 

For example, the vorticity (electron density) can be 
measured directly by dumping the plasma out along the 
magnetic field lines to a phosphorus screen that is imaged 
by a CCD camera. This operation is accomplished simply 
by switching the confinement voltage on the appropriate 
end cylinder to ground potential. Another advantage is 
that the plasma is well separated from the ends and walls 
during the two-dimensional flow, so there are no boundary 
layers at the ends and edge to complicate the flow. More­
over, the effective viscosity of the plasma is very low. 

Figure 5, from the UCSD nonneutral plasma group, 
shows a sequence of experimental images that illustrate 
vortex merger, with vorticity (z-integrated electron den­
sity) indicated by color. The image labeled t = 0 p.,s was 
obtained by dumping the plasma almost immediately after 
two adjacent vortices (electron columns) were created. 
This image encapsulates the initial conditions for the evolu­
tion. The large red circle indicates the location of the wall. 

The other images were obtained by starting from the 
same initial condition, but then allowing the two-dimen­
sional evolution to proceed for 10, 20, 40, 80 and 200 p.,s 
before executing the dump. The measurement destroys the 
plasma, so each image was obtained with a different plasma. 
However, the shot-to-shot reproducibility was sufficiently 
good that a movie of the merger process could be made. 

The time to merge was studied as a function of the 
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ratio SID, where S is the separation between the centers 
and D is the diameter of the two nearly identical vortices. 15 

For values of SID up to about 1.5, the time to merge was 
about the time taken by the two vortices to orbit one 
another (the case for figure 5), but as SID was increased 
through the narrow interval from 1.5 to 1.7, the time to 
merge increased by nearly five orders of magnitude. 
Above this transition, merger was delayed until viscous 
effects broadened the vortices. The timescale separation 
of five orders of magnitude illustrates the advantages of 
using the plasma to model the flow of ideal fluids. 

In similar experiments, Joel Fajans and his Berkeley 
collaborators have studied the stability of a single vortex 
against distortion. 15 In the language of fluid dynamics, 
the distortion away from circular cross section is produced 
by subjecting the vortex to external shear flows. In the 
plasma experiment, these flows are produced by applying 
different voltages to azimuthally separated sectors of the 
cylindrical wall. 

Recently, the UCSD group observed a surprising and 
novel state called a vortex crystal. 16 Two turbulent evo­
lutions are illustrated by the vorticity images in the two 
top rows of figure 6. Highly filamented vorticity distri­
butions (spirally wound sheets of electrons) were produced 
by trapping electrons from a spiral electron source. The 
spiral vorticity structure can be seen in the initial images, 
which were obtained by dumping the plasma shortly after 
trapping, when t = 0.06 TR (TR is the rotation period of the 
column). By the time of the second images (t = 0.6 TR), 

local Kelvin-Helmholtz instabilities had produced an ir­
regular field of many small and intense vortices (red 
regions). The subsequent chaotic advection caused many 
vortices to merge, so that, by the time of the third images 
(t = 6 TR), there were fewer but larger vortices. Further­
more, parts of vortices were sheared into long filamentary 
tails, the remnants of which formed a patch of low-inten­
sity background vorticity (the green region in figure 6). 

The presence of the background vorticity is important, 
because the system of vortices was effectively cooled by 
stirring the background vorticity. Indeed, there was a 
competition between the cooling and the tendency of the 
vortices to merge. 

In the second row of images, the merger processes went 
to completion and left a single large vortex at the center of 
the background vortex patch. In the top row of images, 

FIGURE 6. EXPERIMENTAL 

IMAGES of the vorticity 
distribution are shown for two 
turbulent evolutions (two top 
rows). In the second row of 
images, vortex merger processes 
led to a single large vortex at 
the center of a patch of lower 
intensity background vorticity, 
similar to the last panel of 
figure 5. In the top row, 
cooling of the vortex system 
through interaction with the 
background vortex patch 
annealed the vortices into a 
local energy minimum (vortex 
crystal), thereby arresting 
further evolution and merger. 
The bottom row of images is a 
selection of observed vortex 
crystals. 

cooling annealed the vortex system into a local energy 
minimum (vortex crystal) that arrested further mergers. 

Once formed, the vortex crystals survived as rigidly 
rotating patterns until viscous effects became important 
when t was about 104TR. Although the initial images for 
the two evolutions look similar, they are, in fact, slightly 
different as a result of different settings used for the 
electron source. The settings for the top row of images 
systematically produced a vortex crystal, but the number 
of vortices in the crystal varied from shot to shot. The 
bottom row of images in figure 6 is a selection of some of 
the vortex crystals that have been observed. 

Similar vortex crystals have been observed in rotating 
superfluids, where the energy loss from the vortex system 
occurs through friction on the normal fluidP Of course, 
the vortex crystals are two-dimensional cousins of the 
three-dimensional crystals discussed earlier, since the vor­
tices can be thought of as charged rods that interact 
through a logarithmic potential, rather than the usual 
Coulomb potential for point charges. 

The free decay of two-dimensional turbulence has 
engaged the interest of many theorists, and the unex­
pected discovery of vortex crystals in the final state shows 
that the problem is richer than originally thought. 

Vortex crystals prompt many questions. For instance: 
What sets the number and size of the surviving vortices? 
What is the cooling mechanism-that is, the mechanism 
by which energy is transferred from the intense vortices 
to the background vorticity? Can vortex crystals appear 
in the final state of a flow in which both signs of vorticity 
are present? 

At first glance, the organization of the intense vortices 
into a regular array that starts from a random-looking 
turbulent state may seem to contradict the second law of 
thermodynamics. However, one must remember that the 
entropy of the background vorticity is increasing. 

A recent theory put forward by De-Zhe Jin and Dubin 
maximizes the entropy of the system, which consists of 
background vorticity plus a specified set of intense vorj;ices.l8 

The number and profile of the intense vortices are specified, 
and the entropy is maximized subject to constraints that 
include the incompressible nature of the flow. The theory 
successfully predicts the final shape of the background vor­
ticity profile and the locations of the intense vortices. 

FEBRUARY 1999 PHYSICS TODAY 29 



APPLICATION ASSISTANCE IS OUR SPECIALTY 
113 Falso Drive • Syracuse, New York 13211 U.S.A. 

{315)455·2555 • Fax {315) 455·2544 
e-mail: specs@cryomech.com or www.cryomech.com 

cryogenic 
accessories, 
electronics, 
sensors and 

Phone, fax, e-mail now for the latest comprehensive catalog 
or view the catalog on-line at 

//www.oxford-instruments.com/ri/cryospares/ 

IJ'CID!k® @~\ill'®lii:iil@ IM)@@g)I!!JIJ'®g) OXFORD 
I I I I I I : l . ' ' I I I I I 

130A Baker Avenue Extension tel (978) 369-9933 Oxford Inst ruments 

Concord MA 01742-2 121, USA fax (978) 369-6616 Research Instruments 

e-mail cs.ri@oxinst.co.uk 
vveb wv.w.oxford-instruments.com 

Circle number 14 on Reader Service Card 

A broader perspective 
The above discussion focuses on two opposite limits of 
research with trapped nonneutral plasmas: the late-time 
thermal equilibrium states and the early-time turbulence. 
These two topics were chosen to illustrate the range of 
such research, but many other interesting topics could 
have been discussed-the linear modes of oscillation for 
the trapped plasmas, the novel nature of the collisional 
relaxation to thermal equilibrium, centrifugal separation 
of multispecies plasmas, the late-time dynamical control 
of the plasma temperature and rotation frequency, use of 
the plasmas in high-precision atomic clocks and efforts to 
produce antihydrogen. 

The range of physics that is being explored with these 
simple plasma systems is surprisingly broad and touches 
on issues of interest to plasma physics, atomic physics, 
condensed matter physics and fluid dynamics. And a 
growing number of researchers are using these remarkable 
plasmas for a widening variety of purposes. 

The author thanks John Bollinger, Fred Driscoll, Daniel Dubin, 
Kevin Fine and Cliff Surko for help and guidance in the prepara­
tion of this article. Research on these nonneutral plasma systems 
has been supported largely by the National Science Foundation, 
the Office of Naval Research and the National Institute of Stand­
ards and Technology. 
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