THE THEORY OF
BOSE-EINSTEIN CONDENSATION
OF DILUTE GASES

ose-Einstein condensa-
tion (BEC) has long been

macroscopic quantum phe-
nomena such as supercon-
ductivity and superfluidity.
BEC per se, however, eluded
direct and unquestioned
observation until 1995, when
experimental groups pro-
duced condensates in dilute
atomic alkali gases.!

The story of these BEC
experiments, as recounted in the accompanying article by
Wolfgang Ketterle (page 30), has many of the elements of
a heroic fable. Success was founded on the ingenuity, skill,
and determination of the heroes, but it was hastened by
their acquisition of “magic weapons,” such as laser cooling,
and by serendipity, such as having favorable values of fun-
damental atomic collision parameters. The only thing
missing is the proverbial happy ending, for BEC itself has
turned out to be a magic weapon that has launched other
ambitious new quests during the subsequent four years.

Difficult though it was at first to attain, BEC has been
found to provide a robust and versatile platform for exper-
iments on mesoscopic many-body physics.? It has pushed
the ultima Thule of low-temperature physics into territo-
ry some five orders of magnitude colder than the mil-
likelvin regime of the helium superfluids; offered novel
perspectives on phenomena previously encountered only
in those superfluids; and provided precise tests of some of
the keystone theories of many-particle quantum systems.
Moreover, it has led to the production of entirely new
physical systems, such as mixed degenerate Fermi gases
(see PHYSICS TODAY, October 1999, page 17), and has stim-
ulated visions of extraordinary applications, such as
coherent amplification of matter waves and table-top tests
of finite-temperature quantum field theory.

This article presents a current perspective on
advances in the theoretical understanding of gaseous BEC
from the standpoint of atomic, molecular, and optical
(AMO) physics. In AMO physics, BEC is now perceived
both as an enabling technology, yielding the same exqui-
site control of matter waves that is possible for light
waves, and as a vibrant point of contact with other
branches of physics. Much of the essence of BEC in
trapped-atom systems is captured in concepts that are
familiar to AMO physicists yet have rich parallels in con-
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Bose-Einstein condensates are an ideal
known to be a key element of testing ground for quantum field theory
in real time and at finite temperatures—
basic topics of great importance for
diverse physical systems.

Keith Burnett, Mark Edwards, and
Charles W. Clark

densed matter, statistical,
and elementary particle
physics. For example, the
order parameter, introduced
by Lev Landau as a unifying
concept for understanding
phase transitions, is manifest-
ed in dilute gas BEC as the
condensate wavefunction (see
the cover of this issue and fig-
ure 1), and it can be measured,
photographed, and manipulat-
ed in the laboratory.

What are the special features of Bose—Einstein con-
densed atomic gases, and why are they worthy of the
intense current interest? First and foremost, they are
assemblies of particles in a condensate with mesoscopic
quantum features. Gaseous condensates exhibit very dif-
ferent properties from those in liquid helium. For exam-
ple, more than 99% of the alkali atoms are in the conden-
sate at T'=0, in contrast to liquid helium, in which the
fraction is only on the order of 10%. It is possible to exam-
ine the behavior of gaseous condensates directly in space
and time over a wide range of conditions. The relaxation of
BEC systems far from equilibrium can also be studied,
including direct observation of condensate formation.
Moreover, quantitative theoretical predictions can be
made for comparison with such experiments.

Do trapped gases actually exhibit BEC?

In 1925, Albert Einstein identified a phase transition in
the theory of an ideal quantum gas of particles, obeying
Bose-Einstein statistics, which occurs when the de
Broglie wavelength of characteristic thermal motions, A
= (2nfi*/mkgT)"2, becomes comparable to the mean inter-
particle separation, r = p~3. (Here, m is the particle mass,
kg is Boltzmann’s constant, T is the absolute temperature,
and p is the atom number density.) The criterion for con-
densation of a uniform gas in three dimensions is

A, > 2,612, )

When this condition is attained, the lowest state of the
system acquires a macroscopic population, even if the tem-
perature is sufficiently high to populate many other
states.

In what sense can it be claimed that the current set of
experiments exhibit the condensation phenomenon pre-
dicted by Einstein? Current experiments deal with con-
fined systems of a finite number of particles. Furthermore,
interatomic interactions play a leading role in the ener-
getics of these systems, so the ensembles of atoms cannot
be treated as the ideal gas considered by Einstein. How-
ever, it turns out that the BEC transition in trapped gases
is remarkably robust—it is not spoiled by the presence of
interactions even in the vicinity of the phase transition.
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This
behav-
ior  con-
trasts with the
case of an un-
trapped, homogeneous
gas, which enters a regime of
critical fluctuations. We begin the discussion of this key ques-
tion with a review of an ideal gas in a confining potential.
For a system of N noninteracting atoms in a spheri-
cally symmetric harmonic oscillator trapping potential
with angular frequency w, the critical temperature T, for
the BEC transition is given®—in the thermodynamic or
large-N limit—by kT, = (N/{(3)) 2 fiw, where {(3) = 1.202
is the Riemann zeta function. Values of T\, for the systems
of current interest range from 107 to 10* K. For T'< T,
the number of condensate atoms, N,, is given by

ool

This expression for a trapped gas differs from the corre-
sponding result for a homogeneous gas, which has an
exponent of %/,. Figure 2 shows this thermodynamic result
for large N, compared with the calculated condensate frac-
tions that include only a finite number of atoms and both
finite-size and interaction effects. The effect of finite size
in trapped condensates is to yield transition temperatures
that are not precisely defined, unlike the sharp transition
in the thermodynamic limit. This issue has recently been
addressed in considerable detail, and has provoked fresh
debate over the nature of fluctuations in, and the applica-
bility of standard ensembles to, the statistical mechanics

@

FIGURE 1. WAVEFUNCTION OF A BOSE-EINSTEIN
CONDENSATE with 12 vortices present, calculated
for a rotating condensate in an anisotropic trap. In
this top view of the condensate midplane, the bright-
ness is proportional to the amplitude of the wave-
function, and the color represents the wavefunction
phase. The vortices pierce the figure through the
black holes. (Courtesy of David L. Feder and Peter
Ketcham, NIST.)

of mesoscopic systems.*
The similarity of the curves in figure 2 empha-
sizes the underlying validity of the ideal-gas picture,
which is due to the extremely low temperature of the gas
and the consequent enormous size of the atoms’ de Broglie
wavelength. The de Broglie waves overlap even when the
gas is still very dilute. The measure of diluteness is the
ratio a/r of the characteristic range of the interaction
potential, expressed by the scattering length a (discussed
below), to the mean interparticle separation r. For ratios
near 1, as is the case in liquid helium-4, the simple picture
of BEC fails completely. For alkali gases of current inter-
est, a/r is about 0.01.

Those familiar with the theory of critical phenomena
might still be surprised that the transition region does not
appear to be influenced by the presence of interactions.
The presence of a trapping potential modifies the density
of states at low energies from that of a homogeneous gas,
and the ideal-gas theory works right through the transi-
tion. The occupation of low-energy states near the transi-
tion point spoils pure BEC in uniform gases. In the future,
as larger and larger trapped condensates are made, the
critical region will reemerge. This situation may lead to
condensates with “phase domains”—regions in the con-
densate with differing wavefunction phases—which is an
important issue for the phase coherence of matter-wave
sources.

The interactions in a trapped gas shift in the transi-
tion temperature by a few percent for a typical experi-
mental situation. Away from the transition region, the
effects of interactions are extremely important in the
dynamics of trapped condensates. Even for condensates as
small as a few thousand atoms, the total energy of the con-
densate is made up of comparable contributions from the
external trap potential and the atomic pair interactions,
and the collective quasiparticle excitation spectrum of the
condensate differs significantly from the single-particle
excitation spectrum of the ideal gas.

Condensates at zero temperatur (S

The current crop of gaseous Bose-Einstein condensates
are confined, dilute, weakly interacting systems of cold
bosonic (integer spin) atoms. For the dilute conditions of

TEMPERATURE 7/7,
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these systems, the electronic degrees of freedom are frozen
out and the atoms may be treated as discrete interacting
particles. Whether Bose-Einstein or Fermi-Dirac statis-
tics apply then depends upon the total number of spin-Y/,
fermions (electrons plus nucleons) in the atom, so that the
alkali isotopes with an odd number of nucleons are bosons.

At zero temperature, a condensate is a system of N,
particles all occupying the same single-particle quantum
state. In the simplest view of such a system, its many-body
wavefunction can be written as the N -fold product of one
single-particle, “condensate” wavefunction, ¥(r, ¢). This
product is simply a Hartree many-body wavefunction (one
can even term it a Hartree-Fock wavefunction since it is
automatically symmetric under particle interchange). If
the atoms did not interact, ¥ would satisfy a single-atom,
time-dependent Schriodinger equation. But how do we
determine the condensate wavefunction when interactions
are present?

Condensate atoms interact by means of binary colli-
sions. Since the atoms are extremely cold, only head-on, or
s-wave collisions are important; and because the gas is
dilute, the interaction can be modeled by a zero-range
potential whose strength is given by the s-wave scattering
length a. (See the box on page 41 for more details.) In this
case, each atom feels an additional potential due to the
mean field of all the other atoms present, and this poten-
tial, proportional to the local atomic density, can be includ-
ed in the Schriodinger equation to account for atom—atom
interactions. The result is the nonlinear Schriédinger, or
Gross—Pitaevskii (GP), equation

ih%= A, O+ N, [, O F g, ), (3)

where the Hamiltonian H, includes the kinetic energy and
Virapy the confining potential of the trap—typically a har-
monic oscillator potential. The coefficient of the nonlinear
term is given by U, = 4mfh%a/m, where m is the mass of a
condensate atom. Note that when a is positive, the con-
densate atoms repel each other, and when a is negative,
they attract.

When the condensate has a large number of atoms,

the time-independent GP equation admits a simple solu-
tion. With the ansatz y(r, ¢) = e“*¢(r), where u is the
chemical potential (the energy required to add one more
atom to the condensate), the left side of equation 3
becomes uiy(r, ). When the nonlinear interaction energy
term is much greater than the kinetic energy term—the
so-called Thomas-Fermi limit—one can neglect the kinet-
ic energy and obtain an algebraic solution for the density
profile of the condensate:

1= Vi ®)

2~
I¢(r)| ~ NOUO ’

4)

wherever the right-hand side is positive, and zero other-
wise. The value of u is determined by normalizing ¢. The
density profile for a typical experimental condensate is
thus an inverted paraboloid when the confining potential
is harmonic. For the condensates currently being pro-
duced, typically with 10° or more atoms, the
Thomas-Fermi approximation works very well.

Validity of the Gross-Pitaevskii equation

Two diverse examples demonstrate the usefulness of the
GP equation. The first concerns the dynamics of a conden-
sate when the trapping potential is turned off. In most of
the experimentally realized condensates, the scattering
length is positive and the atoms repel each other. Hence,
when the trap is removed, the condensate expands ballis-
tically. Experimentalists Eric Cornell, Carl Wieman, and
their coworkers at JILA in Boulder, Colorado, used this
expansion to obtain a condensate large enough to be easi-
ly imaged.! JILA theorists Murray Holland and John
Cooper modeled this experiment by using the GP equation
to calculate the evolution of a condensate after the trap
had been turned off.> Figure 3 compares their calculated
image of the density profile of the expanded condensate
with the experimental image obtained in the original JILA
experiment. The agreement was better than 5% and there

were no adjustable parameters in the calculation.
Another important early application of the time-
dependent GP equation was the prediction of condensate
excitation spectra, for it showed how the
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energies and wavefunctions of quasipar-
ticle excitations could be determined by
experiment in a straightforward and
readily visualized fashion. When a con-
densate is weakly disturbed by a sinu-
soidal perturbation of the correct sym-
metry, it will oscillate strongly if the fre-
quency of the disturbance matches one
of the condensate’s characteristic fre-
quencies. These excitation frequencies
can be theoretically determined by
examining the frequencies of small oscil-

lations around a stationary solution of
the GP equation. In other words, the

equations that predict these frequencies

FIGURE 3. DENSITY PROFILE of a
Bose-Einstein condensate. (a) In JILA’s
original observation of a Bose-Einstein
condensate, the magnetic trap was turned
off, the condensate allowed to expand, and
the density profile of the condensate meas-
ured after 60 ms. (b) The predictions of the
Gross-Pitaevskii equation for the same
conditions, as calculated by Murray Hol-

land and John Cooper (JILA). (Courtesy of
Murray Holland.)
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can be found by performing a linear-response analysis on
the GP equation. In this procedure, one starts with a stat-
ic solution to the time-independent GP equation

Hyhy(r)+ N, U, [ () ? Y(r) = uy(r), (5)

where u is again the chemical potential. Adding a small
sinusoidal perturbation to the potential yields two coupled
equations that can be solved for the quasiparticle modes
and frequencies:

Lu, () + NU, @, (1)? v(r) = fiw,u (T)

6

Lo,(t) + NU, (1)) u (1) =—hw,v (1), &
where £ = H,+ 2N, U;|¥,(r)|2— pn. Here, u,(r) and v,(r)
describe the normal modes of the quasiparticle excita-
tions, and w, are the frequencies of collective excitations of
the condensate. Equations 5 and 6 are the same as what
Nikolai Bogoliubov derived by a different means 50 years
ago for a weakly interacting, dilute Bose gas—a system
that didn’t even exist then.

Figure 4 shows the predictions from the Bogoliubov
equations for the excitation frequencies observed in the
JILA rubidium-87 condensate.® In spite of no adjustable
parameters, the calculations agreed with the measured
frequencies at about the 2% level. These comparisons were
performed for relatively small condensates (N, ~ 10%).
Wolfgang Ketterle and his coworkers at MIT have meas-
ured’ the excitation frequencies of condensates with N ~
10%. Sandro Stringari at the University of Trento (Italy)
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FIGURE 4. COLLECTIVE EXCITATION FREQUENCIES of a
rubidium-87 condensate (red points), as measured in the JILA
trap, compared with the predictions of zero-temperature linear-
response theory (blue lines) for two excitations of different
symmetry. The top curve is a radial “breathing mode” with
zero units of angular momentum around the trap symmetry
axis. The bottom curve is a quadrupole mode having two units
of angular momentum around the trap axis.

obtained an analytic expression for the excitation frequen-
cies in this large-N, regime, in which the frequencies are
independent of the scattering length and of the number of
atoms in the condensate.® The agreement between theory
and experiment for these large condensates was again at
a few percent.

The above treatment applies only to condensates with
positive scattering lengths. A negative scattering length in
a homogeneous gas implies complex excitation frequencies
and instability to collapse. Physically, one can lower the
energy of a gas having effectively attractive interactions
by creating a more dense region within it. It was therefore
generally assumed that BEC could be seen only in con-
densates with positive scattering lengths. However, we
found that, for small numbers of atoms, there are stable
solutions of the GP equation for trapped condensates with
negative scattering lengths.® The zero-point energy pro-
vided by the trap balances the attraction of the atoms for
each other and prevents the collapse. This predicted sta-
bility has been confirmed by Randy Hulet’s group at Rice
University for condensates of lithium-7 atoms, which have
a negative scattering length. Stable condensates with a <
0 thus exist only for trapped gases, and there is no coun-
terpart for this type of BEC in a homogeneous gas.

The existence of condensates with negative scattering
lengths has led to a detailed examination of the way in
which the attractive interactions affect the condensates.
The effects include possible dynamical processes, such as
the collapse of a condensate by macroscopic tunneling to a
more compressed state. A related possibility in an ultra-
cold Fermi gas—forming the analog of a superconducting
state through a Bardeen-Cooper-Schrieffer (BCS) transi-
tion—is currently a matter of active investigation.

Condensates at finite temperature

The standard mean-field theory that describes a finite-
temperature trapped gas in thermal equilibrium is the
Hartree-Fock-Bogoliubov (HFB) theory.!® The structure of
the HFB equations is similar to that of the Bogoliubov
equations (equations 5 and 6) for zero temperature. The
main differences are the inclusion of a temperature-
dependent density of noncondensate atoms, and the pres-
ence of the so-called anomalous density, which accounts
for the correlations between the atoms and is equivalent to
the pairing field of BCS theory that produces the gap in

FIGURE 5. COLLECTIVE EXCITATION FREQUENCIES of con-
densates provide a sensitive test of finite-temperature, many-
body theory. The red circles are the collective excitation fre-
quencies measured!! at finite temperatures in the same trap as in
figure 3. The blue diamonds are the predictions of the Popov
theory. The solid black curves, which match well with the
Popov theory, are the excitation frequencies for zero-tempera-
ture condensates with the same number of atoms as in the finite-
temperature system. Although the Popov theory makes accurate
predictions for condensate fractions and specific heats, it fails to
reproduce experimental collective excitation frequencies at tem-
peratures near the Bose-Einstein transition temperature.




superconductivity. If the anomalous density is neglected,
then one has the so-called Popov approximation, which
has been extensively used in the study of BEC at finite
temperatures. In the Popov approximation, the trapped
gas can be thought of as a condensate plus a thermal
ideal gas. Condensate fractions and specific heats calcu-
lated using the Popov equations have matched well with
experiment.?

The success of the Popov theory for condensate frac-
tions and specific heats lies in the fact that these quanti-
ties depend on the entire quasiparticle excitation spec-
trum. Individual quasiparticle frequencies provide a more
sensitive test of finite-temperature theory. Such excitation
frequencies were measured at JILA as a function of tem-
perature and are shown in figure 5, along with our own
calculations using Popov theory.! The agreement between
theory and experiment is again at about 5%, for T/T; <
0.65 or a measured condensate fraction of at least 50%.
For higher temperatures, however, the Popov theory clear-
ly does not match the data. This discrepancy remains an
open question, and its resolution has been an active area
of recent study. One clear difficulty with the Popov theory
is the assumption that the noncondensate part of the
trapped gas is static, which has not been the case in exci-
tation measurements performed thus far.

The use of Popov theory was initially motivated by the
concern that the condensate excitation spectrum be “gap-
less”—that is, that there be a zero-frequency excitation. A
gapless theory is expected to give a better account of low-
energy elementary excitations than a theory having a gap.
In a uniform gas, long-wavelength excitations having an
energy that vanishes with vanishing wavenumber are
called Goldstone bosons and always arise in field theory
when a continuous symmetry of the field—here the phase
of the condensate wavefunction—is spontaneously broken.
In a trapped gas, which has discrete excitations, the Gold-
stone mode is a zero-frequency solution of the Popov (or
Bogoliubov at T' = 0) equations. Such a mode is always a
solution of the Popov equations, but no such mode exists
for the full HFB equations due to the anomalous density.
Attempts to include the anomalous density perturbatively
in the Popov equations have only partly succeeded:'?
Although calculations for the quadrupole mode (the bot-
tom curve in figure 5) agreed with experimental results,
the observed behavior of the mode with zero angular
momentum could not be explained.

The phase of the condensate

There has been a great deal of discussion about the nature
of phase and its relation to spontaneous symmetry break-
ing in mesoscopic systems. In the case of infinite systems,
there is a rigorous basis for the concept of spontaneous
symmetry breaking, in which a continuous aspect of a sys-
tem, such as its phase, adopts one value although all val-
ues are equally acceptable and likely. For a trapped gas,
one must consider what phase means for a finite number
of particles.

One can measure the relative phase of two conden-
sates by observing their interference where they overlap.'®
As is known from the quantum theory of phase and its
measurement, the relative phase between two conden-
sates, each with a definite number of particles in it, is not
defined—number and phase obey the uncertainty rela-
tionship ANA¢ > 1. An interference pattern is neverthe-
less obtained experimentally. As long as which of the two
condensates contributed each atom in the interference
region is not determined, then after the arrival of a few
atoms, one cannot know the number of atoms in either of
the source condensates. This uncertainty is, after all, the
condition for interference and is precisely what is needed

Ultracold Interactions

Bose—Einstein condensation is reached when the interpar-
ticle separation is comparable to the de Broglie wave-
length of the atoms. For evaporatively cooled gases, the de
Broglie wavelength of the atoms is enormous, compared to
the range of the interatomic forces. We can therefore model
binary scattering using an effective contact interaction: V(r -
') = US(r - t'). Here, U, is given in terms of the binary s-
wave scattering length 4 by U, = 4mh%a/m, which appears in
equation 3, the Gross-Pitaevskii equation. This interaction
gives the exact low-energy scattering amplitude (-2) when
used in the simplest, first-order perturbation theory approxi-
mation (the Born approximation).

To see how the contact interaction changes the energy of
the gas, one can consider the relative wavefunction of a pair
of alkali atoms scattering off one another. For ultralow scat-
tering energies, the effect of the interatomic potential is
equivalent to that of a hard sphere of radius 2. When the scat-
tering energy is zero, the relative wavefunction has the form
() = x(1 - a/7). Here, a is the scattering length and y is the
asymptotic value of the wavefunction. Written in this way,
the zero-energy wavefunction clearly has a node at a. (The
above wavefunction is valid only outside the range of the
atomic potential; for smaller distances, the wavefunction
depends on the details of the interatomic potential.)

In the dilute gas, the scattering length provides all of the
information needed to calculate the change in the energy of
the gas due to the interactions between the particles. In the
limit of low scattering energies, this additional energy is
stored in the increased kinetic energy of the particles pro-
duced by the boundary condition of a node at » = 4. This
extra kinetic energy in the wavefunction is given by

2 h? al)’
J. dr (4W2)—{XV{1——}} =l
a m T

If one takes x? as the density of the other particles, one
obtains the needed expression for the energy of one particle
in the presence of others.

At ultralow temperatures, the scattering length can be
much larger (typically ten to a hundred times bigger) than the
hard-core size of the atoms assumed in kinetic theory for
room-temperature atoms. Because of this large scattering
length, collisional relaxation to thermal equilibrium is rela-
tively quick compared to the rate at which atoms are lost
from the trap. For the condensates made thus far, the scat-
tering lengths are still very small compared to the distance
between atoms—a required condition for the gas to be weak-
ly interacting or, equivalently, for the condensate fraction to
be large. Thus, for the alkali condensates,

As oo,

where p is the peak density of the trapped gas and Ay is the
de Broglie wavelength of the atoms. The scattering length can
also be negative when there is an effectively attractive inter-
action between the atoms.

To estimate the scattering length, one needs very precise
knowledge of the interatomic potential. For hydrogen, 4 can
be calculated directly from molecular quantum mechanics.
For alkali atoms, the estimation of « has relied on the devel-
opment of new spectroscopic methods, particularly photo-
association spectroscopy and trap-loss spectroscopy. The the-
oretical and experimental technologies that now exist have
yielded a very precise understanding of the interactions
between ultracold atoms,' which provides a crucial advan-
tage in analyzing assemblies of Bose-Einstein condensed
atoms. The scattering length can be accurately determined
and not treated as an adjustable parameter.
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to produce a state with a well-defined relative phase. The
same interference pattern is obtained if one assumes that
each condensate has a well-defined phase before the
measurement. The relative phase becomes more and more
precisely defined just as the relative number distribution
between the two condensates becomes more and more
uncertain. Each condensate evolves into a superposition of
number states with a Poissonian probability distribution.
The condensate is thus in a coherent state, analogous to
the state of the field inside a laser cavity.

For the order parameter to have the simple e time
dependence, the condensate must be truly macroscopic. If
the system is finite, then there will be a timescale over
which the components of the coherent state get out of step.
Whether this decoherence can be observed in an experi-
ment is currently being studied.

BEC formation and laser action

There is an important link between laser action and the
production of a condensate. The Bose-Einstein distribu-
tion arises from the detailed balance of collisions between
pairs of particles—be they photons or bosonic atoms in a
dilute gas. When degeneracy becomes important, the
dependence of the collision rate on the occupation of final
states must be retained —that is, there are stimulated col-
lision processes. For lasers, it is the stimulated emission of
a photon into a particular mode of the radiation field that
causes laser action. For atoms in a trap, the stimulated
scattering of atoms produces a buildup of population in the
ground state. A quantitative theory of this behavior, quan-
tum kinetic theory,'* has been developed and used to pre-
dict the time evolution of a condensate formed after a
rapid quench of the energy in a gas very close to conden-
sation. Such studies have confirmed the critical role of
Bose stimulation in the formation of a condensate.

What are some of the features of a laser mode that
should be looked for in the behavior of a condensate? One
is the reduction of fluctuations, compared to a thermal
source. This reduction is manifest in two- and three-
photon absorption by elements placed inside the laser cav-
ity: Nonlinear absorption is very sensitive to fluctuations
in the intensity of the laser mode. One can look for analo-
gous behavior in a condensate in the rate of decay of the
condensate due to two- or three-body collisions—processes
equivalent to nonlinear absorption of the laser mode. For
example, consider the case of three-body collisions in a lit-
tle more detail. The local rate of decay depends on the
average value of the cubed density, (p%). For a thermal
Bose gas, one expects fluctuations such that

(P’(r)) ~6(p(x)°. (7
For a laser mode or a condensate, the corresponding result is
(P° @) ~(p(r)°. (8)

Formally, this difference arises because the laser mode
and the condensate are well represented by coherent
states. One could thus attempt to verify that a condensate
is like a laser—that is, in a coherent state—by measuring
the three-body decay rate above and below the BEC tran-
sition. When Wieman, Cornell, and their coworkers at
JILA performed this experiment,'® they found precisely
the difference one would expect if the condensate were in
a coherent state. '

BEC: Present and future

The preceding account describes developments that have
occurred in the last few years since the pioneering experi-
ments. At the present time, the subject is moving into a
broad range of new directions. The study of multiple com-
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ponent condensates enables us to see the evolution (such
as folding and unwinding) of more complex order parame-
ters in space and time. Phase transitions in lower dimen-
sional systems are now accessible: The recent triumph in
the study of the superfluid transition in films of spin-
polarized hydrogen on liquid helium will soon be comple-
mented by experiments on thin sheets of condensed alkali
atoms confined by laser fields. The theory of these con-
fined lower-dimensional systems looks very rich indeed.
Direct formation of vortices and solitons in trapped gases
has now been achieved (see PHYSICS TODAY, November
1999, page 17), and the study of their nucleation and sta-
bility is under way. The dilute gases enable researchers to
magnify the structure of these systems and subject their
dynamics to direct scrutiny. The formation and evolution
of structure (domains, vortices, and so forth) in quenched
conditions is under way based on large-scale simulation.
These studies of topological excitations are driving the
development of new computational and visualization tech-
niques that can meet the considerable challenge that the
theory presents.

The use of condensates as a source of coherent matter
waves has only just begun, and it heralds a new age for
precision measurement based on coherent atomic optics.
The theory of matter-wave coherence and entanglement
for atom laser sources is yielding genuinely new insights
into the structure of many-body systems. For those work-
ing in the field, the connections that have been established
between previously disparate communities has been a
cause for great excitement, and the opportunities for
quantitative theory abound in this new and growing play-
ground for condensed matter and AMO theorists.

References

1. M. H. Anderson et al., Science 269, 198 (1995). K. B. Davis et
al., Phys. Rev. Lett. 75, 3969 (1995). C. C. Bradley et al.,
Phys. Rev. Lett. 75, 1687 (1995). C. C. Bradley, C. A. Sackett,
R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).

2. F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999). A. S.
Parkins, D. F. Walls, Phys. Rep. 308, 1 (1998). A. Griffin,
D. W. Snoke, S. Stringari, eds., Bose—Einstein Condensation
(Cambridge U. P, New York, 1995). E. Arimondo, W. D.
Phillips, F. Strumia, eds., Laser Manipulation of Atoms and
Ions (North-Holland, Amsterdam, 1992). M. Inguscio, S.
Stringari, C. Wieman, eds., Bose-Einstein Condensation in
Atomic Gases (I0S Press, Amsterdam, 1999). See also the
Georgia Southern University BEC bibliography on the web at
http://amo.phy.gasou.edwbec.html/bibliography.html.

3. V. Bagnato, D. E. Pritchard, D. Kleppner, Phys. Rev. A 35,
4354 (1987).

4. P.Navez et al., Phys. Rev. Lett. 79, 1789 (1997). S. Grossman,
M. Holthaus, Optics Express 1, 262 (1997). C. Weiss, M.
Wilkens, Optics Express 1, 272 (1997). M. E. Fisher, Rev.
Mod. Phys. 70, 653 (1997).

5. M. Holland, J. Cooper, Phys. Rev. A 53, R1954 (1996).

6. M. Edwards et al., Phys. Rev. Lett. 77, 1671 (1996). D. S. Jin

et al., Phys. Rev. Lett. 77, 420 (1996).

. M.-O. Mewes et al., Phys. Rev. Lett. 77, 988 (1996).

. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

. P. A. Ruprecht et al., Phys. Rev. A 51, 4704 (1995). F. Dalfovo,
S. Stringari, Phys. Rev. A 53, 2477 (1996). R. J. Dodd et al.,
Phys. Rev. A 54, 661 (1996).

10. A. Griffin, Phys. Rev. B 53, 9341 (1996).

11. D. S. Jin et al., Phys. Rev. Lett. 78, 764 (1997). R. J. Dodd et

al., Phys. Rev. A 57, R32 (1998).

12. D. A. W. Hutchinson, R. J. Dodd, K. Burnett, Phys. Rev. Lett.
81, 2198 (1998).

13. J. Javanainen, S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996).

14. See, for example, D. Jaksch et al., Phys. Rev. A 58, 1450
(1998), and references therein. Also see Yu. Kagan, B. V. Svis-
tunov, Phys. Rev. Lett. 79, 3331 (1998).

15. E. A. Burt et al., Phys. Rev. Lett. 79, 337 (1997).

16. J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne, Rev. Mod.
Phys. 71, 1 (1999). |

© 0 3



