
THE THEORY OF 
BOSE-EINSTEIN CONDENSATION 

OF DILUTE GASES 
B ose-Einstein condensa­

tion (BEC) has long been 
known to be a key element of 
macroscopic quantum phe­
nomena such as supercon­
ductivity and superfluidity. 
BEC per se, however, eluded 
direct and unquestioned 
observation until 1995, when 
experimental groups pro­
duced condensates in dilute 
atomic alkali gases. 1 

Bose-Einstein condensates are an ideal 
testing ground for quantum field theory 
in real time and at finite temperatures­

basic topics of great importance for 
diverse physical systems. 

densed matter, statistical, 
and elementary particle 
physics. For example, the 
order parameter, introduced 
by Lev Landau as a unifying 
concept for understanding 
phase transitions, is manifest­
ed in dilute gas BEC as the 
condensate wavefunction (see 
the cover of this issue and fig­
ure 1), and it can be measured, 
photographed, and manipulat­
ed in the laboratory. 

Keith Burnett, Mark Edwards, and 
Charles W. Clark 

The story of these BEC 
experiments, as recounted in the accompanying article by 
Wolfgang Ketterle (page 30), has many of the elements of 
a heroic fable . Success was founded on the ingenuity, skill, 
and determination of the heroes, but it was hastened by 
their acquisition of"magic weapons," such as laser cooling, 
and by serendipity, such as having favorable values offun­
damental atomic collision parameters. The only thing 
missing is the proverbial happy ending, for BEC itself has 
turned out to be a magic weapon that has launched other 
ambitious new quests during the subsequent four years. 

Difficult though it was at first to attain, BEC has been 
found to provide a robust and versatile platform for exper­
iments on mesoscopic many-body physics.2 It has pushed 
the ultima Thule of low-temperature physics into territo­
ry some five orders of magnitude colder than the mil­
likelvin regime of the helium superfluids; offered novel 
perspectives on phenomena previously encountered only 
in those superfluids; and provided precise tests of some of 
the keystone theories of many-particle quantum systems. 
Moreover, it has led to the production of entirely new 
physical systems, such as mixed degenerate Fermi gases 
(see PHYSICS TODAY, October 1999, page 17), and has stim­
ulated visions of extraordinary applications, such as 
coherent amplification of matter waves and table-top tests 
of finite-temperature quantum field theory. 

This article presents a current perspective on 
advances in the theoretical understanding of gaseous BEC 
from the standpoint of atomic, molecular, and optical 
(AMO) physics. In AMO physics, BEC is now perceived 
both as an enabling technology, yielding the same exqui­
site control of matter waves that is possible for light 
waves, and as a vibrant point of contact with other 
branches of physics. Much of the essence of BEC in 
trapped-atom systems is captured in concepts that are 
familiar to AMO physicists yet have rich parallels in con-
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What are the special features of Bose-Einstein con­
densed atomic gases, and why are they worthy of the 
intense current interest? First and foremost, they are 
assemblies of particles in a condensate with mesoscopic 
quantum features. Gaseous condensates exhibit very dif­
ferent properties from those in liquid helium. For exam­
ple, more than 99% of the alkali atoms are in the conden­
sate at T = 0, in contrast to liquid helium, in which the 
fraction is only on the order of 10%. It is possible to exam­
ine the behavior of gaseous condensates directly in space 
and time over a wide range of conditions. The relaxation of 
BEC systems far from equilibrium can also be studied, 
including direct observation of condensate formation. 
Moreover, quantitative theoretical predictions can be 
made for comparison with such experiments. 

Do trapped gases actually exhibit BEC? 
In 1925, Albert Einstein identified a phase transition in 
the theory of an ideal quantum gas of particles, obeying 
Bose-Einstein statistics, which occurs when the de 
Broglie wavelength of characteristic thermal motions, Ads 
= (2-rrh2/mksT) 112 , becomes comparable to the mean inter­
particle separation, r = p-113 • (Here, m is the particle mass, 
k s is Boltzmann's constant, Tis the absolute temperature, 
and p is the atom number density.) The criterion for con­
densation of a uniform gas in three dimensions is 

pA~B > 2.612. (1) 

When this condition is attained, the lowest state of the 
system acquires a macroscopic population, even ifthe tem­
perature is sufficiently high to populate many other 
states. 

In what sense can it be claimed that the current set of 
experiments exhibit the condensation phenomenon pre­
dicted by Einstein? Current experiments deal with con­
fined systems of a finite number of particles. Furthermore, 
interatomic interactions play a leading role in the ener­
getics of these systems, so the ensembles of atoms cannot 
be treated as the ideal gas considered by Einstein. How­
ever, it turns out that the BEC transition in trapped gases 
is remarkably robust-it is not spoiled by the presence of 
interactions even in the vicinity of the phase transition. 
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This 
behav-

ior con-
trasts with the 

case of an un­
trapped, homogeneous 

gas, which enters a regime of 
critical fluctuations. We begin the discussion ofthis key ques­
tion with a review of an ideal gas in a confining potential. 

For a system of N noninteracting atoms in a spheri­
cally symmetric harmonic oscillator trapping potential 
with angular frequency w, the critical temperature T0 for 
the BEC transition is given3- in the thermodynamic or 
Iarge-N limit-by kBTo = (Ni~(3))-113 hw, where ~(3) "" 1.202 
is the Riemann zeta function. Values of T0 for the systems 
of current interest range from 10-7 to w-• K. For T < T0 , 

the number of condensate atoms, N 0 , is given by 

(2) 

This expression for a trapped gas differs from the corre­
sponding result for a homogeneous gas, which has an 
exponent of%. Figure 2 shows this thermodynamic result 
for large N, compared with the calculated condensate frac­
tions that include only a finite number of atoms and both 
finite-size and interaction effects. The effect of finite size 
in trapped condensates is to yield transition temperatures 
that are not precisely defined, unlike the sharp transition 
in the thermodynamic limit. This issue has recently been 
addressed in considerable detail , and has provoked fresh 
debate over the nature of fluctuations in, and the applica­
bility of standard ensembles to, the statistical mechanics 
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FIGURE 1. WAVEFUNCTION OF A BOSE-EINSTEIN 
CONDENSATE with 12 vortices present, calculated 
for a rotating condensate in an anisotropic trap. In 
this top view of the condensate midplane, the bright­
ness is proportional to the amplitude of the wave­
function, and the color represents the wavefunction 
phase. The vortices pierce the figure through the 
black holes. (Courtesy of David L. Feder and Peter 
Ketcham, NIST.) 

of mesoscopic systems.• 
The similarity of the curves in figure 2 empha­

sizes the underlyi.ng validity of the ideal-gas picture, 
which is due to the extremely low temperature of the gas 

and the consequent enormous size of the atoms' de Broglie 
wavelength. The de Broglie waves overlap even when the 
gas is still very dilute. The measure of diluteness is the 
ratio air of the characteristic range of the interaction 
potential, expressed by the scattering length a (discussed 
below), to the mean interparticle separation r. For ratios 
near 1, as is the case in liquid helium-4, the simple picture 
of BEC fails completely. For alkali gases of current inter­
est, air is about 0.01. 

Those familiar with the theory of critical phenomena 
might still be surprised that the transition region does not 
appear to be influenced by the presence of interactions. 
The presence of a trapping potential modifies the density 
of states at low energies from that of a homogeneous gas, 
and the ideal-gas theory works right through the transi­
tion. The occupation of low-energy states near the transi­
tion point spoils pure BEC in uniform gases. In the future, 
as larger and larger trapped condensates are made, the 
critical region will reemerge. This situation may lead to 
condensates with "phase domains"-regions in the con­
densate with differing wavefunction phases-which is an 
important issue for the phase coherence of matter-wave 
sources. 

The interactions in a trapped gas shift in the transi­
tion temperature by a few percent for a typical experi­
mental situation. Away from the transition region, the 
effects of interactions are extremely important in the 
dynamics of trapped condensates. Even for condensates as 
small as a few thousand atoms, the total energy of the con­
densate is made up of comparable contributions from the 
external trap potential and the atomic pair interactions, 
and the collective quasiparticle excitation spectrum of the 
condensate differs significantly from the single-particle 
excitation spectrum of the ideal gas. 

Condensates at zero temperature 
The current crop of gaseous Bose-Einstein condensates 
are confined, dilute, weakly interacting systems of cold 
bosonic (integer spin) atoms. For the dilute conditions of 

FIGURE 2. THE CONDENSATE FRACTION as a function of tem­
perature is affected by both finite-size and interaction effects. 
Here are the predictions of three different models for the frac­
tion of atoms that is in the condensate when the JILA trap is 
loaded with 2000 rubidium-87 atoms. The dotted line shows 
the thermodynamic result of equation 2. The dashed line is the 
result of incorporating finite-size effects, distributing 2000 
atoms according to the Bose-Einstein distribution. The Popov 
theory (solid red line) includes both a finite number of atoms 
and atom-atom interactions, and gives very good agreement 
with observed condensate fractions. 



these systems, the electronic degrees of freedom are frozen 
out and the atoms may be treated as discrete interacting 
particles. Whether Bose-Einstein or Fermi-Dirac statis­
tics apply then depends upon the total number of spin-1/ 2 

fermions (electrons plus nucleons) in the atom, so that the 
alkali isotopes with an odd number of nucleons are bosons. 

At zero temperature, a condensate is a system of N 0 
particles all occupying the same single-particle quantum 
state. In the simplest view of such a system, its many-body 
wavefunction can be written as the N0-fold product of one 
single-particle, "condensate" wavefunction, 1/J(r, t). This 
product is simply a Hartree many-body wavefunction (one 
can even term it a Hartree-Fock wavefunction since it is 
automatically symmetric under particle interchange). If 
the atoms did not interact, 1/J would satisfy a single-atom, 
time-dependent Schri:idinger equation. But how do we 
determine the condensate wavefunction when interactions 
are present? 

Condensate atoms interact by means of binary colli­
sions. Since the atoms are extremely cold, only head-on, or 
s-wave collisions are important; and because the gas is 
dilute, the interaction can be modeled by a zero-range 
potential whose strength is given by the s-wave scattering 
length a. (See the box on page 41 for more details .) In this 
case, each atom feels an additional potential due to the 
mean field of all the other atoms present, and this poten­
tial, proportional to the local atomic density, can be includ­
ed in the Schri:idinger equation to account for atom-atom 
interactions. The result is the nonlinear Schri:idinger, or 
Gross-Pitaevskii (GP), equation 

ih iJlf; = H 01f;(r, t) +NoVo 11/J(r, t) 12 1/J(r, t), (3) 
at 

where the Hamiltonian H 0 includes the kinetic energy and 
v trap• the confining potential of the trap-typically a har­
monic oscillator potential. The coefficient of the nonlinear 
term is given by U0 = 47Th2alm, where m is the mass of a 
condensate atom. Note that when a is positive, the con­
densate atoms repel each other, and when a is negative, 
they attract. 

When the condensate has a large number of atoms, 
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the time-independent GP equation admits a simple solu­
tion. With the ansatz 1/J(r, t) = e-ip.tlhcf>(r) , where JL is the 
chemical potential (the energy required to add one more 
atom to the condensate), the left side of equation 3 
becomes JL1/J(r, t) . When the nonlinear interaction energy 
term is much greater than the kinetic energy term-the 
so-called Thomas-Fermi limit-one can neglect the kinet­
ic energy and obtain an algebraic solution for the density 
profile of the condensate: 

I cf> (r) 12"" JL- Vtra/r), 
NoUo 

(4) 

wherever the right-hand side is positive, and zero other­
wise. The value of JL is determined by normalizing cf> . The 
density profile for a typical experimental condensate is 
thus an inverted paraboloid when the confining potential 
is harmonic. For the condensates currently being pro­
duced, typically with 106 or more atoms, the 
Thomas-Fermi approximation works very well. 

Validity of the Gross-Pitaevskii equation 
Two diverse examples demonstrate the usefulness of the 
GP equation. The first concerns the dynamics of a conden­
sate when the trapping potential is turned off. In most of 
the experimentally realized condensates, the scattering 
length is positive and the atoms repel each other. Hence, 
when the trap is removed, the condensate expands ballis­
tically. Experimentalists Eric Cornell, Carl Wieman, and 
their coworkers at JILA in Boulder, Colorado, used this 
expansion to obtain a condensate large enough to be easi­
ly imaged.1 JILA theorists Murray Holland and John 
Cooper modeled this experiment by using the GP equation 
to calculate the evolution of a condensate after the trap 
had been turned off.5 Figure 3 compares their calculated 
image of the density profile of the expanded condensate 
with the experimental image obtained in the original JILA 
experiment. The agreement was better than 5% and there 
were no adjustable parameters in the calculation. 

Another important early application of the time­
dependent GP equation was the prediction of condensate 

excitation spectra, for it showed how the 
energies and wavefunctions of quasipar­
ticle excitations could be determined by 
experiment in a straightforward and 
readily visualized fashion. When a con­
densate is weakly disturbed by a sinu­
soidal perturbation of the correct sym­
metry, it will oscillate strongly if the fre­
quency of the disturbance matches one 
of the condensate's characteristic fre­
quencies. These excitation frequencies 
can be theoretically determined by 
examining the frequencies of small oscil-

20 40 lations around a stationary solution of 
the GP equation. In other words, the 
equations that predict these frequencies 

20 40 

FIGURE 3. DENSITY PROFILE of a 
Bose-Einstein condensate. (a) In JILA's 
original observation of a Bose-Einstein 
condensate, the magnetic trap was turned 
off, the condensate allowed to expand, and 
the density profile of the condensate meas­
ured after 60 ms. (b) The predictions of the 
Gross-Pitaevskii equation for the same 
conditions, as calculated by Murray Hol­
land and John Cooper GILA). (Courtesy of 
Murray Holland.) 
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can be found by performing a linear-response analysis on 
the GP equation. In this procedure, one starts with a stat­
ic solution to the time-independent GP equation 

(5) 

where J.L is again the chemical potential. Adding a small 
sinusoidal perturbation to the potential yields two coupled 
equations that can be solved for the quasiparticle modes 
and frequencies: 

Lu, (r )+ Np0 (1/J0 (r)) 2 v,(r ) = liw,u £r) 

Lv, (r) + Np0 (1/J~ (r)) 2 u ,(r ) = -liw,v £r), 
(6) 

where L = H 0 + 2N0U0 I1/J0(r ) 1 2 - J.L . Here, u,(r) and v,(r) 
describe the normal modes of the quasiparticle excita­
tions, and w, are the frequencies of collective excitations of 
the condensate. Equations 5 and 6 are the same as what 
Nikolai Bogoliubov derived by a different means 50 years 
ago for a weakly interacting, dilute Bose gas-a system 
that didn't even exist then. 

Figure 4 shows the predictions from the Bogoliubov 
equations for the excitation frequencies observed in the 
J ILA rubidium-87 condensate.6 In spite of no adjustable 
parameters, the calculations agreed with the measured 
frequencies at about the 2% level. These comparisons were 
performed for relatively small condensates (N0 - 104) . 

Wolfgang Ketterle and his coworkers at MIT have meas­
ured7 the excitation frequencies of condensates with N 0 -

106
• Sandro Stringari at the University of Trento (Italy) 
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FIGURE 4. COLLECTIVE EXCITATION FREQUENCIES of a 
rubidium-87 condensate {red points), as measured in the JILA 
trap, compared with the predictions of zero-temperature linear­
response theory {blue lines) for two excitations of different 
symmetry. The top curve is a radial "breathing mode" with 
zero units of angular momentum around the trap symmetry 
axis. The bottom curve is a quadrupole mode having two units 
of angular momentum around the trap axis. 

obtained an analytic expression for the excitation frequen­
cies in this large-N 0 regime, in which the frequencies are 
independent of the scattering length and of the number of 
atoms in the condensate.8 The agreement between theory 
and experiment for these large condensates was again at 
a few percent. 

The above treatment applies only to condensates with 
positive scattering lengths. A negative scattering length in 
a homogeneous gas implies complex excitation frequencies 
and instability to collapse. Physically, one can lower the 
energy of a gas having effectively attractive interactions 
by creating a more dense region within it. It was therefore 
generally assumed that BEC could be seen only in con­
densates with positive scattering lengths. However, we 
found that, for small numbers of atoms, there are stable 
solutions of the GP equation for trapped condensates with 
negative scattering lengths.9 The zero-point energy pro­
vided by the trap balances the attraction of the atoms for 
each other and prevents the collapse. This predicted sta­
bility has been confirmed by Randy Hulet's group at Rice 
University for condensates oflithium-7 atoms, which have 
a negative scattering length. Stable condensates with a < 
0 thus exist only for trapped gases, and there is no coun­
terpart for this type of BEC in a homogeneous gas. 

The existence of condensates with negative scattering 
lengths has led to a detailed examination of the way in 
which the attractive interactions affect the condensates. 
The effects include possible dynamical processes, such as 
the collapse of a condensate by macroscopic tunneling to a 
more compressed state. A related possibility in an ultra­
cold Fermi gas - forming the analog of a superconducting 
state through a Bardeen-Cooper-Schrieffer (BCS) transi­
tion-is currently a matter of active investigation. 

Condensates at finite temperature 
The standard mean-field theory that describes a finite­
temperature trapped gas in thermal equilibrium is the 
Hartree-Fock-Bogoliubov (HFB) theory. 10 The structure of 
the HFB equations is similar to that of the Bogoliubov 
equations (equations 5 and 6) for zero temperature. The 
main differences are the inclusion of a temperature­
dependent density of noncondensate atoms, and the pres­
ence of the so-called anomalous density, which accounts 
for the correlations between the atoms and is equivalent to 
the pairing field of BCS theory that produces the gap in 

FIGURE 5. COLLECTIVE EXCITATION FREQUENCIES of con­
densates provide a sensitive test of finite-temperature, many­
body theory. The red circles are the collective excitation fre­
quencies measured 11 at finite temperatures in the same trap as in 
figure 3. The blue diamonds are the predictions of the Popov 
theory. The solid black curves, which match well with the 
Popov theory, are the excitation frequencies for zero-tempera­
ture condensates with the same number of atoms as in the finite­
temperature system. Although the Popov theory makes accurate 
predictions for condensate fractions and specific heats, it fai ls to 
reproduce experimental collective excitation frequencies at tem­
peratures near the Bose-Einstein transition temperature. 



superconductivity. If the anomalous density is neglected, 
then one has the so-called Popov approximation, which 
has been extensively used in the study of BEC at finite 
temperatures. In the Popov approximation, the trapped 
gas can be thought of as a condensate plus a thermal 
ideal gas. Condensate fractions and specific heats calcu­
lated using the Popov equations have matched well with 
experiment.2 

The success of the Popov theory for condensate frac­
tions and specific heats lies in the fact that these quanti­
ties depend on the entire quasiparticle excitation spec­
trum. Individual quasiparticle frequencies provide a more 
sensitive test of finite-temperature theory. Such excitation 
frequencies were measured at JILA as a function of tem­
perature and are shown in figure 5, along with our own 
calculations using Popov theory. 11 The agreement between 
theory and experiment is again at about 5%, for TIT0 :5 

0.65 or a measured condensate fraction of at least 50%. 
For higher temperatures, however, the Popov theory clear­
ly does not match the data. This discrepancy remains an 
open question, and its resolution has been an active area 
of recent study. One clear difficulty with the Popov theory 
is the assumption that the noncondensate part of the 
trapped gas is static, which has not been the case in exci­
tation measurements performed thus far. 

The use of Popov theory was initially motivated by the 
concern that the condensate excitation spectrum be "gap­
less" -that is, that there be a zero-frequency excitation. A 
gapless theory is expected to give a better account of low­
energy elementary excitations than a theory having a gap. 
In a uniform gas, long-wavelength excitations having an 
energy that vanishes with vanishing wavenumber are 
called Goldstone bosons and always arise in field theory 
when a continuous symmetry of the field-here the phase 
of the condensate wavefunction-is spontaneously broken. 
In a trapped gas, which has discrete excitations, the Gold­
stone mode is a zero-frequency solution of the Popov (or 
Bogoliubov at T = 0) equations. Such a mode is always a 
solution of the Popov equations, but no such mode exists 
for the full HFB equations due to the anomalous density. 
Attempts to include the anomalous density perturbatively 
in the Popov equations have only partly succeeded:12 

Although calculations for the quadrupole mode (the bot­
tom curve in figure 5) agreed with experimental results, 
the observed behavior of the mode with zero angular 
momentum could not be explained. 

The phase of the condensate 
There has been a great deal of discussion about the nature 
of phase and its relation to spontaneous symmetry break­
ing in mesoscopic systems. In the case of infinite systems, 
there is a rigorous basis for the concept of spontane9us 
symmetry breaking, in which a continuous aspect of a sys­
tem, such as its phase, adopts one value although all val­
ues are equally acceptable and likely. For a trapped gas, 
one must consider what phase means for a finite number 
of particles. 

One can measure the relative phase of two conden­
sates by observing their interference where they overlap. 13 

As is known from the quantum theory of phase and its 
measurement, the relative phase between two conden­
sates, each with a definite number of particles in it, is not 
defined-number and phase obey the uncertainty rela­
tionship t::.N 6.lf> :2: 1. An interference pattern is neverthe­
less obtained experimentally. As long as which of the two 
condensates contributed each atom in · the interference 
region is not determined, then after the arrival of a few 
atoms, one cannot know the number of atoms in either of 
the source condensates. This uncertainty is, after all, the 
condition for interference and is precisely what is needed 

Ultracold Interactions 

B~se-Einstein_ condensation is reached when the interpar­
ticle separatwn 1s comparable to the de Broglie wave­

length of the atoms. For evaporatively cooled gases, the de 
Broglie wavelength of the atoms is enormous, compared to 
the range of the interatomic forces. We can therefore model 
binary scattering using an effective contact interaction: V(r -
r') = Ui5(r- r') . Here, U0 is given in terms of the binary s­
wave scattering length a by U0 = 4wli2alm, which appears in 
equation 3, the Gross-Pitaevskii equation. This interaction 
gives the exact low-energy scattering amplitude (-a) when 
used in the simplest, first-order perturbation theory approxi­
mation (the Born approximation). 

To see how the contact interaction changes the energy of 
the gas, one can consider the relative wavefunction of a pair 
of alkali atoms scattering off one another. For u!tralow scat­
tering energies, the effect of the interatomic potential is 
equivalent to that of a hard sphere of radius a. When the scat­
tering energy is zero, the relative wavefunction has the form 
lf>(r) = x(l- air). Here, a is the scattering length and xis the 
asymptotic value of the wavefunction. Written in this way, 
the zero-energy wavefunction clearly has a node at a. (The 
above wavefunction is valid only outside the range of the 
atomic potential; for smaller distances, the wavefunction 
depends on the details of the interatomic potential.) 

In the dilute gas, the scattering length provides all of the 
information needed to calculate the change in the energy of 
the gas due to the interactions between the particles. In the 
limit of low scattering energies, this additional energy is 
stored in the increased kinetic energy of the particles pro­
duced by the boundary condition of a node at r = a. This 
extra kinetic energy in the wavefunction is given by 

{

0 

dr(4?Tr 2)~ {xv[1-;]r = u0x
2

• 

If one takes ¥ as the density of the other particles, one 
obtains the needed expression for the energy of one particle 
in the presence of others. 

At u!tralow temperatures, the scattering length can be 
much larger (typically ten to a hundred times bigger) than the 
hard-core size of the atoms assumed in kinetic theory for 
room-temperature atoms. Because of this large scattering 
length, collisional relaxation to thermal equilibrium is rela­
tively quick compared to the rate at which atoms are lost 
from the trap. For the condensates made thus far, the scat­
tering lengths are still very small compared to the distance 
between atoms-a required condition for the gas to be weak­
ly interacting or, equivalently, for the condensate fraction to 
be large. Thus, for the alkali condensates, 

AdB »p-113 » a, 

where p is the peak density of the trapped gas and AdB is the 
de Broglie wavelength of the atoms. The scattering length can 
also be negative when there is an effectively attractive inter­
action between the atoms. 

To estimate the scattering length, one needs very precise 
knowledge of the interatomic potential. For hydrogen, a can 
be calculated directly from molecular quantum mechanics. 
For alkali atoms, the estimation of a has relied on the devel­
opment of new spectroscopic methods, particularly photo­
association spectroscopy and trap-loss spectroscopy. The the­
oretical and experimental technologies that now exist have 
yielded a very precise understanding of the interactions 
between u!tracold atoms, 16 which provides a crucial advan­
tage in analyzing assemblies of Bose-Einstein condensed 
atoms. The scattering length can be accurately determined 
and not treated as an adjustable parameter. 
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to produce a state with a well-defined relative phase. The 
same interference pattern is obtained if one assumes that 
each condensate has a well-defined phase before the 
measurement. The relative phase becomes more and more 
precisely defined just as the relative number distribution 
between the two condensates becomes more and more 
uncertain. Each condensate evolves into a superposition of 
number states with a Poissonian probability distribution. 
The condensate is thus in a coherent state, analogous to 
the state of the field inside a laser cavity. 

For the order parameter to have the simple e-i~ttr. time 
dependence, the condensate must be truly macroscopic. If 
the system is finite, then there will be a timescale over 
which the components of the coherent state get out of step. 
Whether this decoherence can be observed in an experi­
ment is currently being studied. 

BEC formation and laser action 
There is an important link between laser action and the 
production of a condensate. The Bose-Einstein distribu­
tion arises from the detailed balance of collisions between 
pairs of particles-be they photons or bosonic atoms in a 
dilute gas. When degeneracy becomes important, the 
dependence of the collision rate on the occupation of final 
states must be retained-that is, there are stimulated col­
lision processes. For lasers, it is the stimulated emission of 
a photon into a particular mode of the radiation field that 
causes laser action. For atoms in a trap, the stimulated 
scattering of atoms produces a buildup of population in the 
ground state. A quantitative theory of this behavior, quan­
tum kinetic theory, 14 has been developed and used to pre­
dict the time evolution of a condensate formed after a 
rapid quench of the energy in a gas very close to conden­
sation. Such studies have confirmed the critical role of 
Bose stimulation in the formation of a condensate. 

What are some of the features of a laser mode that 
should be looked for in the behavior of a condensate? One 
is the reduction of fluctuations, compared to a thermal 
source. This reduction is manifest in two- and three­
photon absorption by elements placed inside the laser cav­
ity: Nonlinear absorption is very sensitive to fluctuations 
in the intensity of the laser mode. One can look for analo­
gqus behavior in a condensate in the rate of decay of the 
condensate due to two- or three-body collisions-processes 
equivalent to nonlinear absorption of the laser mode. For 
example, consider the case of three-body collisions in a lit­
tle more detail. The local rate of decay depends on the 
average value of the cubed density, (p3). For a thermal 
Bose gas, one expects fluctuations such that 

(p3 (r))~6 (p(r)) 3 . (7) 

For a laser mode or a condensate, the corresponding result is 

(8) 

Formally, this difference arises because the laser mode 
and the condensate are well represented by coherent 
states. One could thus attempt to verify that a condensate 
is like a laser-that is, in a coherent state-by measuring 
the three-body decay rate above and below the BEC tran­
sition. When Wieman, Cornell, and their coworkers at 
JILA performed this experiment, 15 they found precisely 
the difference one would expect if the condensate were in 
a coherent state. -

BEC: Present and future 
The preceding account describes developments that have 
occurred in the last few years since the pioneering experi­
ments. At the present time, the subject is moving into a 
broad range of new directions. The study of multiple com-
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ponent condensates enables us to see the evolution (such 
as folding and unwinding) of more complex order parame­
ters in space and time. Phase transitions in lower dimen­
sional systems are now accessible: The recent triumph in 
the study of the superfluid transition in films of spin­
polarized hydrogen on liquid helium will soon be comple­
mented by experiments on thin sheets of condensed alkali 
atoms confined by laser fields . The theory of these con­
fined lower-dimensional systems looks very rich indeed. 
Direct formation of vortices and solitons in trapped gases 
has now been achieved (see PHYSICS TODAY, November 
1999, page 17), and the study of their nucleation and sta­
bility is under way. The dilute gases enable researchers to 
magnify the structure of these systems and subject their 
dynamics to direct scrutiny. The formation and evolution 
of structure (domains, vortices, and so forth) in quenched 
conditions is under way based on large-scale simulation. 
These studies of topological excitations are driving the 
development of new computational and visualization tech­
niques that can meet the considerable challenge that the 
theory presents. 

The use of condensates as a source of coherent matter 
waves has only just begun, and it heralds a new age for 
precision measurement based on coherent atomic optics. 
The theory of matter-wave coherence and entanglement 
for atom laser sources is yielding genuinely new insights 
into the structure of many-body systems. For those work­
ing in the field, the connections that have been established 
between previously disparate communities has been a 
cause for great excitement, and the opportunities for 
quantitative theory abound in this new and growing play­
ground for condensed matter and AMO theorists. 
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