
NANOSCALE FLUCTUATIONS 
AT SOLID SURFACES 
Before you build things in the nanoworld, you'd better 

make sure you know how atomic fluctuations affect your 
structure's size and shape. 

Zoltan T oroczkai and Ellen D. Williams 

On the nanometer scale, a seemingly smooth crystalline 
surface is not only bumpy, it's also in motion. Tiny 

mesas and depressions appear and disappear; escarp­
ments range over the surface like waves on a beach. These 
thermal fluctuations are visible, thanks to advances in 
imaging techniques, which exploit electrons to divine the 
nanoscale motions (see figure 1). But although experi­
ments can capture the spatial structure of surface fluctu­
ations with atomic resolution, they lack the temporal res­
olution to follow the hops of individual atoms. Instead, 
observations yield a set of parameters that characterize 
how the surface changes on longer, millisecond timescales. 

Can these parameters be derived from physical argu­
ments to predict the nanoscopic behavior of surfaces? With 
so much activity at the atomic level, building a model 
based on the behavior of individual atoms is too difficult. 
Moreover, we do not know how all the atomic degrees of 
freedom couple to the motion of surface features formed by 
tens to hundreds of atoms. 

Fortunately, it turns out that a thermodynamic 
approach - one that treats fluctuations as the larger-scale 
manifestations of atoms moving in equilibrium-can suc­
cessfully account for the observed behavior. This 
approach, which is the subject of this article, has more 
than academic interest. As devices shrink in size to the 
nanometer scale, the measurement, characterization, and 
understanding of how tiny surface features evolve will be 
crucial in determining the reliability and utility of nano­
structures. 

Characterizing fluctuations 
A key building block in the evolution of surface structure 
is the step-a line boundary at which the surface changes 
height by one or more atomic units. Steps piled on top of 
each other form walls, which, in turn, constitute the basic 
architectural elements of nanostructures. Because atoms 
in steps are bound to fewer atoms than are the atoms that 
make up flat surfaces, steps are more susceptible to ther­
mal fluctuations than the surface as a whole. Step motion 
is therefore the basis for nanostructure evolution. 

A step advances or r etreats when atoms move along 
its edge or back and forth between the step and adjacent 
terraces . But, as suggested in figure 2, we can picture a 
step as a one-dimensional interface or as a massless string 
that can vibrate with any wavelength greater than the 
atomic scale. In this scheme, the restoring force that keeps 
step fluctuations from growing indefinitely is the free ener­
gy cost of increasing the step length, which is governed by 

ZoLTAN T O ROCZKAI and E LLEN D . W ILLIAMS conduct research at 
the University of Maryland's department of pbysics and at the National 
Science Foundation and University of Maryland's Materials Research Sci· 
ence and Engineering Center in College Park, Maryland. 

24 DECEMBER 1999 PHYSICS TODAY 

the step stiffness, jj(T) (see the box on page 27). 
We can quantify the tendency of a step's configuration 

x(y) to remain straight by defining a chemical potential: 
- iJ

2x 
J.L=-D/3 al , (1) 

where 0 is the smallest increment in area by which a step 
moves, and the amplitude of the fluctuation is assumed to 
be small. When the step curves due to thermal fluctua­
tions, the chemical potential changes, triggering atomic 
motion that opposes the deviations from a straight config­
uration (when J.L = 0). 

At the atomic level, the physical mechanisms by 
which diffusing atoms give rise to step fluctuations can be 
put into three general classes: 
[> Periphery diffusion, in which atoms flow along the step 
edge. 
[> Terrace diffusion, in which an atom moves from the 
step to the terrace, diffuses on the terraces, and then re­
attaches to the step at a site some distance away. 
[> Attachment-detachment, in which atoms move 
between the step and terraces with no correlation between 
motion at different sites. 

Remarkably, a simple, linearized approach based on 
the Langevin equation can not only describe the large­
scale behavior and universal properties of fluctuating 
steps, but also embody the three atomic diffusion mecha­
nisms. 1·2 According to this approach, a given location x on 
a step will move according to 

iJX =-v(-\12)z /2X +1) , (2) 
at 

where v depends on the time constant, step stiffness, and 
temperature; z is a positive number, and 1] is a noise term 
that may depend on the diffusion mechanism. The value of 
z is related to the character of the atomic diffusion mech­
anism: z = 4 for periphery diffusion, z = 3 for terrace diffu­
sion, and z = 2 for attachment-detachment. 

Applying this analysis to fluctuations mediated by 
each of the three mechanisms yields three different class­
es of behavior, each described by a different power-law 
dependence of the fluctuations on time, t emperature, and 
stiffness. Because we can image steps in real time, we can 
test whether this approach accurately describes how steps 
fluctuate , and, if it does, measure the key time constants 
and step stiffness. In particular, we can measure the tem­
poral correlation function G(t) and compare it with our 
model-based prediction, as given by: 

(kT) z-l(t)1 

G(t) = ([x(y, t) - x(y, 0)] 2
) ex {3 7 -; :; , (3) 

where z takes the limiting value of 4 for periphery diffusion, 
3 for terrace diffusion and 2 for attachment-detachment. 

The first quantitative measurement of G(t) for fluctu-

@ 1999 American Institute of Physics, S-003 1-9228-9912-010-6 



a 

FIGURE 1. STEP FLUCTUATIONS under nonequilibirum and 
equilibrium conditions. a: An external electric field can drive a 
surface into complex nonequilibrium structures, such as the 
tight bands of single-atom steps in this 11 X 11 f-Lm STM 
image. (Courtesy of Konrad Thuermer, University of Mary­
land.) b: In thermal equilibrium at 900 °C, steps fluctuate on 
timescales of seconds, as shown in this 1.1 X 12 f-Lm STM 
image of a silicon (111) surface. The thin red lines, which are 
derived from a subsequent image, show where the steps (in 
darker orange) will be 13.7 s later. (Courtesy of J. J. Metois, 
CRMC2-CNRS Marseilles.) 

ating steps was made by Jean-Jacques Metois's group at 
CNRS-Marseilles. The researchers used reflection elec­
tron microscopy (REM) to image steps on silicon (111) at 
temperatures in the range 900 to 1255 oc and at video 
rates of 30 Hz. As figure 1b shows, at these temperatures, 
steps shift position dramatically (by tens of nanometers) 
on timescales of seconds. At 900 oc, Metois's group found 
that G(t) was clearly proportional to t 112• 

In the wake of this first measurement, many further 
studies of step systems have revealed fluctuations that 
seem to be characterized either by periphery diffusion or 
by attachment-detachment. Although it is pleasing to 
have experiments agree well with theory, these results are 
actually quite puzzling. In real systems, without informa­
tion to the contrary, we would probably expect several 
competing diffusion mechanisms to operate at the same 
time and to possibly contribute more or less equally to G(t) 
under the same conditions. That, in any given system, we 
see just one of three theoretical limiting-case behaviors, 
rather than a mixture, greatly simplifies the problem of 
predicting fluctuations . 

But why is nature so amenable? A more detailed 
analysis of step fluctuations that includes the possibility 
of competing mechanisms has answered the question. It 
turns out that only a small physical change in the relative 
importance of one mechanism is required to tip the observ­
able fluctuation behavior into one of the three limiting­
case regimes. For instance, when the time constant for 
attachment-detachment -r. is large compared with the 
rate for periphery diffusion -rP or terrace diffusion -r,, 
attachment-detachment events limit the overall rate. In 
this case, z takes the limiting value of 2, which is formal­
ly expected when the rates of periphery diffusion and ter-

race diffusion are infinitely fast . Decreasing the ratio of -r, 
to either of the other two time constants yields crossovers 
in observable behavior to the other two regimes, as shown 
in figure 3. 

For example, a crossover from z = 2 to z = 3 behavior 
occurs with an approximately two-orders-of-magnitude 
change in the ratio of the time constants for diffusion and 
attachment-detachment. Such changes in relative rates 
are easily accomplished due to the tendency of rates to 
change exponentially with temperature. For instance, if 
the two processes differ in activation energy by 0.5 eV, 
then a change of 50 in the ratio of the rates would require 
about a 100 K change in temperature at 300 K. 

Atomic clusters-surface islands-can be thought of 
as closed-loop steps, which, like open steps, can diffuse 
over surfaces. To address this phenomenon, experimental 
and theoretical studies have sought to determine the vari­
ance of the displacement of the clusters' center of mass as 
the clusters move about in a random-walk fashion. These 
random walks are expected to fall within three classes 
governed by the same three diffusion mechanisms intro­
duced above. 

As in the case of open steps, we can derive a measur­
able quantity and compare it directly to its measured 
value-in this case, the dependence of the diffusion coeffi­
cient D on the linear cluster size R. The experiments have 
shown that, usually, D ~ R-•. Furthermore, when diffusion 
along the periphery of the island predominates, a = 3. For 
the terrace diffusion mechanism, a = 2; for attach-

. ment- detachment diffusion, a = 1. 
This approach to edge fluctuations has been extended 

by Norman Bartelt and Robert Hwang of Sandia National 
Laboratories to address the effects of dislocations and 
strain on island diffusion. Doubtless other exciting possi­
bilities exist, too. 

Fluctuations and decay 
Edge fluctuations allow nonequilibrium structures to 
decay back toward their equilibrium state. If our interpre­
tation of edge fluctuations is correct, then we should be able 
to quantitatively predict how nonequilibrium structures 
evolve. And if the structure is not too severely perturbed 
from its equilibrium configuration, then we can use the 
simple approach of linear kinetics, in which the velocity of a 
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step is assumed to be proportional to the 
change in the free energy produced by 
the step's motion. Here, the proportion­
ality constant is directly related to the 
time constant for thermal fluctuations. 

The simplest case of structural 
decay that can be described in terms of 
steps is the decay of a single perturbed 
step, as illustrated by the surface 
shown in figure 4 in which the decay of 
the step bump after it has formed 
could be tracked quantitatively. Ana­
lyzing the decay's Fourier components 
yielded time constants that depend on 
wavelength in the same way as for 
step edge diffusion. Further vindica­
tion of the thermodynamic approach: 
The predicted value of the terrace diffu­
sion time constant, 10 ms, agreed with 
the value determined from previous 
direct observations of equilibrium step 
fluctuations. 

FIGURE 2. A MOVING STEP-LINE BOUNDARY on a solid surface can be thought of as 
a fluctuation with a wavelength of A that successively advances or retreats through 
mass exchange between two sites. This mass exchange can be classified in terms of 
three limiting mechanisms-namely, periphery diffusion, in which atoms flow along 
the step edge; terrace diffusion, in which an atom moves from the step to the terrace, 
diffuses on the terraces, and then re-attaches to the step at a site some distance away; 
and attachment-detachment, in which atoms move between the step and terraces 
with no correlation between motion at different sites. 

Such consistency checks give sur­
face scientists the confidence to apply this approach to the 
evolution of more complex structures. So far, it has been 
applied to-and tested against-structures having inter­
acting steps, three-dimensional forms, and variable chem­
ical composition, as well as to structures in the presence of 
applied fields, such as strain or electric potential. 

As an example of a complex structure, consider the 
stability of the pyramidal structure shown in figure 5. 
Whether fluctuation-driven kinetics drives the evolution 
of such structures can be evaluated by observing the decay 
of a single-layer island: If the decay rate is independent of 
island size (as, in fact, is the case), then detachment kinet­
ics governs the decay. 

From the measured island decay rate at any temper­
ature (for example, 6 per second at 465 °C), the value of 
[Jh. can be determined explicitly. This number in turn can 
be used to evaluate the decay of the pyramid, which can be 
thought of as being made up of sequential layers of 
islands, each decaying as a result of the emission of atoms 
from its edges. But to understand how such structures 
change in time, we have to model not just how steps 
behave by themselves, but also how they interact. 

The basic physical issues are easy to understand. 
First, when steps are close together, step interactions 
(which arise from the configurational entropy of the steps 
and from the strain at the surface) will favor motion that 
maximizes the distance between steps. This tendency pro-
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vides a driving force for smoothing steep-walled structures. 
Including step-step interactions in the description of step 
motion is accomplished by adding the potential energy 
change due to moving a step between two neighboring 
steps. For a steep-walled structure, the step-step repulsive 
interaction is strong and tends to prevent fluctuations away 
from the uniform slope. This process is clearly observed in 
the evolution of the structure in figure 5, where side walls 
maintain on average a constant slope as the top layers 
sequentially disappear. 

For the simple case of such a shape-preserving decay, 
the coupled equations of motion of the structure's sequen­
tiallayers imply that the height of the pyramid will decay 
as t114 with an absolute rate being completely determined 
by the same factors that determine the decay of a single­
layer island. 

Analysis of many decay cycles yields extremely good 
agreement with these predictions. For instance, at 465 oc 
the measured time-exponent is 0.25 ± 0.01, and the meas­
ured absolute rate (6.1 ± 0.4 Als114) is within a factor of 
two of the predicted value (3.1 ± 0.3 Als114). This success 
provides further encouraging evidence that the use of 
measured thermodynamic parameters is a powerful tool 
for predicting even complex decay behavior. 

Reliability and cumulative performance 
Using measured fluctuations as the basis for modeling dif­
fusion and decay rates is a natural extension of the 
methodology of traditional materials physics. However, as 
interest in nanostructures grows, so too does the possibil­
ity that the fluctuations themselves could be of practical 
interest. Two scenarios (among many) for this possibility 
come to mind. In both, nanoscale structures that can fluc­
tuate between two configurations having different proper­
ties could be used to perform a crucial function, such as 
electronic switching. 

In the first scenario, fluctuations are undesirable 

FIGURE 3. EXPONENT OF THE TEMPORAL CORRELATION 
FUNCTION in terms of the relative values of the time constants 
for the three limiting physical mechanisms-namely, periphery 
diffusion ('T , z = 4; shown in blue), terrace diffusion (T,, z = 3; 
shown in g~een), attachment-detachment (T,, z = 2; shown in 
red). The plot (for a fluctuation whose wavelength is 30 times the 
lattice spacing) demonstrates that the three diffusion mechanisms 
are sharply separated and intermediate behaviors rarely occur. 
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FIGURE 4. DECAY OF A 
MONATOMIC ISLAND on a 90 X 90 
nm sample of copper (111) surface 
at a temperature of 303 K, as viewed 
with scanning tunneling micro­
scropy. The island suddenly attaches 
to the step edge forming a bump (a 
and b) and then decays in time (c) 
due to edge diffusion, which is 
shown graphically in (d) with 100-
second time steps. (Adapted from 
M. Giesen, G. S. Icking-Konert, 
Surface Science, volume 412/ 413, 
page 645, 1998.) 

is 1.55, in contrast to the initial 
configuration, which, being area 
filling, has a geometrical dimen­
sion of 2.) 

As the system evolves in 
time, fewer and fewer sites 
remain persistent, and the total 
number of persistent sites decays 
according to a power law N (t) ~ 
r •, where () is the so-called per­
sistence exponent. For the simple 
dynamics model described above 
the value of () has been deter­
mined numerically with great 

o so 100 150 200 250 300 350 400 precision3 to be () = 0.1875(10). 
DISTANCE ALONG STEP EDGE (a11 ) The apparent simplicity of 

because only one of the system's fluctuation configurations 
gives the performance required. In this case, predicting 
the time it takes a single structure to change shape is cru­
cial because it determines the redundancy needed to real­
ize the desired reliability. Known as the persistence prob­
lem, this question is an active area of research. 

In the second scenario, the inevitability of structural 
fluctuations provides the basis for the device's function. 
Here, a key quantity is the cumulative time that the struc­
ture spends in one of its fluctuation configurations. Pre­
dicting this fractional on-time or cumulative-state time is 
known as the sign-time or residence-time problem, and is 
closely related to the persistence problem. 

To illustrate the richness of the physics of persistence, 
a simple numerical experiment can be performed on a 
model that incorporates the simplest and most common­
place process that can take place on a surface-atomic 
diffusion. At first, to make things even simpler, only the 
relaxational dynamics of diffusion contributes to the evo­
lution of the initially rough surface. On a two-dimension­
al substrate, a rough surface is initially prepared by 
choosing h randomly from a Gaussian distribution with 
zero mean. Then the surface is allowed to evolve deter­
ministically through the diffusion equation. As the sur­
face fluctuates , the persistent sites are kept track of­
that is, sites at which the deviation of the height from its 
mean of zero did not change sign up to a given timet. If a 
fluctuation changes the sign of the height (measured as 
the deviation from its mean) at a site before or at time t, 
that site is simply discarded from that moment on. 

Figure 6 displays in the unit square the distribution 
of persistent sites at various times for which h 2:: 0. 
Despite the simplicity of the dynamics, the generated sets 
have complex structures that appear-unexpectedly-to 
be fractal. (The Haussdorff dimension of the persistent set 

the dynamics has spurred an 
extensive search to find a rigorous derivation of the expo­
nent-but so far without success. Recently, however, a 
fruitful approach to the persistence problem has emerged 
in the form of the so-called distribution of sign times 
(DST)/·5•6 which is also known as the residence time dis­
tribution.7 Less restrictive in its definition than persist­
ence time, the DST concept incorporates persistence as a 
particular case. With DST, when site i changes sign in h, 
we do not discard the site (as we did when constructing 

Atomistic description of step bending 

By relying on a thermodynamic evaluation of step proper­
ties, the step continuum approach outlined in the article 

spares us the complexities of the true atomic potentials near 
low-symmetry structures on surfaces. H owever, we can 
recover some insight into the underlying physics by using 
simple models of atomic interactions, such as lattice models. 
Using such a model, it is immediately apparent that the free 
energy cost for bending a step arises from the cost of creating 
kink sites at the step edges. 

Analytical expressions for the free energy of the step as a 
function of temperature have been derived for a number of 
lattice models. For the simplest square lattice with near­
neighbor interactions, the dependence is: 

i'l = kT sinh2 (_e_] 
1-' a l 2kT J' 

where a is the interatomic spacing and e is the attractive energy 
between two atoms. Given an estimate of the kink energy, the 
lattice model can be used to derive the expected value of the 
stiffness at different temperatures. H owever, regardless of any 
understanding of the underlying atomistic structure, thermo­
dynamic values of the step stiffness can be determined from the 
steps' experimentally derived spatial correlation function. 
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FIGURES. 
DECAY OF A SIL· 
ICON PYRAMID. 

A pyramid is first 
formed by draw· 

ing atoms from 
the surface by 
means of the 

strong field at the 
tip of a scanning 
tunneling micro· 
scope. At moder­
ate temperarures, 

few, if any, free Si 
atoms diffuse on 
the surrounding 

substrate, with 
the result that Si 
atoms from the 
bottom edges of 
the pyramid are 

not replaced 
when they leave 
and the pyramid 
decays. (Adapted 

from A. Ichimiya, 
Y. Tanaka, K. 

Hayashi, Surface 
Review and Let· 

ters, volume 5, 
page 821, 1998.) 

the persistence probabilities). Rather, we keep the site, 
but record the time T ; at the site only when its value of h 
is positive. It's as if each site has its own clock that ticks 
only when h (or, generally speaking, the fluctuation) at the 
site has a positive sign. Thus, at time t, each site has a 
clock value T ; associated with it, and, since the interface 
fluctuates in a stochastic fashion, T ; is a random variable. 
The probability S(T, t)dT that one finds a site with a sign­
time clock value between T- dT and T gives the sign-time 
density. Clearly, sites for which T = t are those for which h 
~ 0 up to time t-in other words, the persistent sites. 
Based on the sign-times approach, an analytic expression 
can be derived for the persistence exponent, 
0=(4-1T) /(41T-8)=0.1879 ... , which agrees remarkably 
with the experimentally derived value quoted above. 

Although more general than the persistence probabil­
ity, the DST is easier to measure because more sites 
remain in play for longer as the measurement proceeds. 
Moreover, it can be measured with the same experimental 
techniques used for directly measuring step fluctuations. 
The data are the same sort, too. 

Theoretical analysis of the DST-even on simple 
growth models-has led to a few surprises. In particular, 
it turns out that for models described by the Langevin 
equation, the DST depends only on the substrate dimen­
sion and on the order of the relaxational term. That is, the 
DST for step fluctuations has only three different func­
tional forms, and they correspond to the three classes of 
diffusion mechanism-just like the temporal correlation 
function, G(t). 

This class of Langevin process has provided another 
surprise: Ergodicity breaks down across a critical spatial 
dimension d' . In general, an ergodic variable is one that, 
given enough time, will eventually adopt every one of its 
possible values. But here, when d > d' , persistence is high­
ly favored-that is, once positive (or negative), a site will 
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FIGURE 6. SIMULATED PERSISTENT SITES-sites whose height 
has not changed sign-as they evolve in time according to diffu· 
sion dynamics. The union of red, green, and blue dots is the set 
of persistent sites after 51.2 s; red and green is the set after 
102.4 s; and red represents the set after 409.6 s. 

remain positive (or negative). Above d' , however, persist­
ence decays rapidly. 

The existence of this critical dimension is, in fact, a 
key manifestation of the difference between fluctuations 
mediated by attachment-detachment and those mediated 
by periphery diffusion. Furthermore, attachment-detach­
ment tends to predominate in the tails of the DST-that 
is, for residence times that tend either to zero or to the 
elapsed time t. 

Looking ahead 
Historically, observations of thermal fluctuations have 
been interpreted in terms of Brownian motion or through 
the relationship between fluctuations or the macroscopic 
quantities, such as the diffusion coefficient and magnetic 
susceptibility. The advent of our ability to observe step 
fluctuations in real time at the nanoscale has changed our 
perspective profoundly. Nowadays, any theoretically inter­
esting correlation function is experimentally accessible. 
On the theoretical front, it has been truly and pleasantly 
surprising that a relatively simple approach yields solu­
tions that are also simple, belying Wolfgang Pauli's belief 
that the devil-not God-is responsible for the fiendishly 
complex nature of surfaces. 

Some of the applications of this technological advance 
are clear and immediate. Quantitative predictions of struc­
tural stability, for example, are well under way. Other poten­
tial applications, such as those stemming from direct exper­
imental connections to persistence problems, are in that 
pleasant state limited only by our imaginations. 
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