minimum of practical application. This enables the author to spend half of the book discussing renormalization and its physical implications.

The first half of the book is a valuable, if spare, introduction to Fevnman diagram methods. Some topics, the nonrelativistic limit of the Dirac equation in particular, are given beautiful and novel treatments. More often, Huang takes the standard route and covers the ground in a terse mathematical style. The clean and compact way that he has organized the subject has real value. Nonetheless, certain topics need more flesh. For example, a full chapter on Green's functions works up to a derivation of the Bethe-Salpeter equation but then has no space for any application to bound states in a real system.

In the second half of the book, Huang presents the theory of renormalization and the renormalization group. He introduces Kenneth Wilson's method of integrating out degrees of freedom in the functional integral formalism of quantum field theory to generate a flow in the space of possible Lagrangians. He explains formally how this method describes the way the physical content of a quantum field theory changes as a function of the momentum scale and why renormalizable Lagrangians appear at fixed points of this flow. Unfortunately, the discussion does not include any Feynman-diagram computations that would show explicitly how the method works.

Even in the case of quantum electrodynamics, for which the momentum-dependent coupling constant had been computed in the first half of the book, Huang does not look back to convert this information into the new language he has developed. Similarly, the author mentions the ε expansion for critical exponents but fails to present any computations in this framework. Thus, the discussion of renormalization is left at a completely formal level.

The book also includes a discussion of the basic principles of spontaneously broken symmetry. One chapter gives a very clear presentation of the Kosterlitz-Thouless theory of phase transitions in the two-dimensional XY model. However, the applications of this theory are not carried beyond what was current in the mid-1970s, and the general picture of two-dimensional phase transitions afforded by conformal invariance is not discussed. References to elementary particle physics are even more dated.

Huang's book, then, falls short of its objective: to be a basic text that clarifies the meaning of renormalization. But the book does give instructive explanations of many specific aspects of quantum field theory and thus should be a useful reference work for students.

MICHAEL E. PESKIN SLAC, Stanford University Stanford, California

An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos

Irving R. Epstein and John A. Pojman Oxford U. P., New York, 1998. 392 pp. \$75.00 hc ISBN 0-19-509670-3

Nonlinear chemical dynamics is a young, rapidly developing field; it came into existence essentially in the late 1960s and has brought about a radical reassessment of a number of ideas that prevailed in the literature until then. One such idea is that, in purely dissipative systems—chemical reactions, for example-the second law of thermodynamics imposes a monotonic approach to a final stationary state. Nonlinear chemical dynamics has also played an instrumental role in advancing our understanding of rhythmic phenomena in biology, which are known to prevail at all levels of biological organization. And it has contributed substantially to the development of the wider field of nonlinear science and dynamical systems theory, by offering the most convincing, physically implementable models of complex behavior in systems involving few variables and kept free of spatial inhomogeneities.

Irving Epstein and John Pojman's An Introduction to Nonlinear Chemical Dynamics is intended to provide an introduction to the field at the advanced undergraduate or introductory graduate level. It consists of two parts of comparable length: an overview, including such topics as introductory kinetics, some selected models, elements of stability theory, the design and analysis of chemical oscillators, and patterns in spatially extended systems; and a special topics part, covering chaos, the role of external fields and delays, polymer systems, coupled oscillators, biological oscillators, Turing patterns, and stirring effects. The book concludes with two appendices devoted, respectively, to demonstrations and to the design of experiments for the undergraduate lab.

The authors are active researchers

in the field and have shown over the years a firm commitment to the training of students and young scientists. Epstein played a pioneering role in the design and analysis of chemical oscillators and the study of stirring effects on chemical dynamics. He has also helped promote the field on an international scale, notably by organizing a 1982 Gordon research conference on the subject, the first of a continuing series that attracts impressive numbers of participants. Pojman was one of the first in the field to tackle systematically the incidence of nonlinear dynamics in polymerization processes.

The book, written in a pleasant, informal style, covers a wide range of topics, for which it provides both representative and illustrative examples and a good coverage of the literature. In this sense it succeeds in one of its goals: to introduce the reader to the phenomenology and ideas of nonlinear chemical dynamics. In most cases, however, the coverage is of the review paper style. As a result, after studying this book, readers will not have acquired the necessary tools and insight to apply their knowledge to new problems, nor will they have found a new technique that was perhaps missing from their background. In this respect, the book cannot be regarded as a reference textbook for students in the terminal years of study.

Despite this reservation, it should be noted that the book covers, for the first time, certain important topics that had been missing in the literature at this level, such as external fields, delays, polymer systems, and stirring effects. It also provides useful information on the operational aspects of chemical reactors.

All in all, the book constitutes a source of information to which both students and teachers interested in nonlinear science in general and in nonlinear chemical dynamics in particular may advantageously turn to complete a more technically oriented training.

GREGOIRE NICOLIS
Free University of Brussels, Belgium

Acoustics: Basic Physics, Theory, and Methods

Paul Filippi, Dominique Habault, Jean-Pierre Lefebvre, and Aimé Bergassoli Academic, San Diego, Calif., 1999. 317 pp. \$69.95 hc ISBN 0-12-256190-2

For years, there have been three standard popular texts for graduate-level

acoustics education in the US. Now they have some competition.

The three are Fundamentals of Acoustics by Lawrence Kinsler, Austin Frey, Alan Coppens, and James Sanders (Wiley, 3rd edition, 1982); Acoustics: An Introduction to Its Physical Principles and Applications by Alan Pierce (Acoustical Society of America, 1989); and Theoretical Acoustics by Philip Morse and Karl Uno Ingard (Princeton U. P., 1968). Each has its advantages and shortcomings. When I teach a two-semester, graduate-level sequence of courses in acoustics at Pennsylvania State University, I usually pull material from all three.

The new book by Paul Filippi, Dominique Habault, Jean-Pierre Lefebvre, and Aimé Bergassoli is an important contribution. Their Acoustics: Basic Physics, Theory, and Methods is not a rehash of material from the three popular texts mentioned above. Much of the material has been selected from alternate sources, and several fresh approaches are provided from the work of the authors themselves: the book was derived from a six-month course in acoustics for graduate students that the authors taught at the University of Aix-Marseille in France. (Their lecture notes in French were published by the French Acoustical Society and the Editions de Physique in 1994; they were later translated into English at the urging of Philip Doak of the University of Southampton, in the UK.)

Unlike many books in acoustics. the new *Acoustics* does not attempt to be exhaustive in covering all subdisciplines of the field. Rather, it focuses on teaching the basic analytical tools required for advanced analysis. For example, the radiation from the baffled circular piston is not covered, but a piston at one end of a duct and in the wall of a duct is. Likewise, the transversely oscillating sphere is not covered, but the infinite fluid-loaded thin plate is. The book's sections on enclosures and ducts with absorbing walls are very thorough and readable; by contrast, many acoustics monographs discuss the effects of impedance coatings on modal decomposition only qualitatively.

In the tradition of graduate education in France, a high level of mathematical sophistication is assumed, and this approach pays many dividends. The techniques that can thereby be introduced include boundary integral equations, layer potentials, geometrical theory of diffraction, the parabolic approximation, method of stationary phase, method of steepest descents, WKB approximation, Wei-

ner-Hopf approaches, and Galerkin's method. The presentations are extremely clear and accessible. Chapter 1, on the physical basis of acoustics, may seem daunting to the casual reader because of its mathematical rigor. Those already familiar with acoustics, however, will probably want to dive directly into the later chapters: enclosures: diffraction and boundary integral equations; outdoor sound propagation; analytic expansions and approximations; boundary integral equations; guided waves; and transmission and radiation of sound by thin plates. An additional chapter gives homework problems for the earlier chapters, and the book concludes with a section on mathematical notations and definitions. At only one and one-quarter pages, the index is terse.

The book does have a few drawbacks worth noting. There are some misprints (two of the more obvious ones are in equations 1.5 and 2.7). An attempt was made to provide crossreferences between chapters, but notations often differ: for example, chapter 1 uses " σ " for stress tensor while chapter 2 uses " σ " for the domain boundary. Several concepts are repeated; for example, the Delany-Bazely model for the specific impedance of a porous medium. I hope that in a future revision, such minor annovances will be eliminated. since this book provides a useful advanced survey in acoustics.

Overall, I liked the book, and I surely would recommend it for the library of anyone involved in advanced acoustics. I will not use the book as a text in any class but will instead use it as source material.

VICTOR W. SPARROW Pennsylvania State University, University Park

NEW BOOKS

Theory and Mathematical Methods

Understanding Quantum Mechanics. R. Omnès. Princeton U. P., Princeton, N.J., 1999. 307 pp. \$35.00 hc ISBN 0-691-00435-8

Wavelets and Renormalization. Series in Approximations and Decompositions 10. G. Battle. World Scientific, River Edge, N.J., 1999. 561 pp. \$68.00 hc ISBN 981-02-2624-1

Undergraduate Texts and Education

General Relativity: A Geometric Approach. M. Ludvigsen. Cambridge U. P., New York, 1999. 217 pp. \$74.95 hc (\$27.95 pb) ISBN 0-521-63019-3 hc (0-521-63976-X pb)

Multichannel Analyzer World's Smallest 'Pocket MCA'

Size: 6.5" x 2.8" x 0.8" (165mm x 71mm x 20mm) Weight: <300 grams (including batteries)

The **MCA8000A** is a full featured, low power Multichannel Analyzer intended to be used with a wide variety of detector systems.

- 16k data channels
- Stores up to 128 spectra
- 24 hours of continuous data acquisition from two 1.5V AA batteries
- Conversion time ≤5 μs (≥200,000 cps)
- Two stage input analog pipeline
- Differential nonlinearity <±0.6% Integral nonlinearity <±0.02% Sliding-scale linearization
- Two peak detection modes:
 First peak after threshold
 (nuclear spectroscopy)
 Absolute peak after the threshold (aerosol particle detection)
- Two TTL compatible gates for coincidence & anticoincidence
- Stand-alone data acquisition
- Date-time stamp Y2K Compliant
- Stored spectra protection via software security & serial ID number
- 115.2 kbps serial interface
 Free Windows & DOS software

AMPTEK INC.

6 De Angelo Drive, Bedford, MA 01730-2204 U.S.A **Tel:** +1 (781) 275-2242 **Fax:** +1 (781) 275-3470 **e-mail:** sales@amptek.com **www.amptek.com**