SELE-TRAPPING OF OPTICAL
BEAMS: SPATIAL SOLITONS

Ithough people have al-

ways been fascinated by
visual manifestations of non-
linear wave phenomena,
such as tsunamis and tidal
waves, the first scientifically
documented report of a self-
trapped wave did not come
until 1834, when a Scottish
scientist, John S. Russell, ob-
served a “rounded smooth
and well defined heap of water” propagating in a narrow
and shallow canal “without change of form or diminution
of speed.” The water was calm on both sides of this
unusual wave, and Russell noted that it had the form of
a “solitary elevation.”

Fifty years later, two Dutchmen, Diederik Johannes
Korteweg and Gustave de Vries, realized that this phe-
nomenon required an unusually large amplitude and that
the medium must behave in a fundamentally different
manner to waves of different amplitudes—that is, its
behavior must be nonlinear. In 1965, Norman Zabusky
and Martin Kruskal realized that such localized pulses,
or “wavepackets,” maintain their identities even when they
undergo collisions with each other, and that they conserve
power and linear momentum. Zabusky and Kruskal con-
cluded that these pulses behave like particles and named
them solitons.! An immense amount of research soon fol-
lowed, and solitons were observed in many different branches
of science. This article concentrates on one particular type
of soliton, which has experienced a minirevolution in the last
few years: the optical spatial soliton.

In nature, pulses have a tendency to broaden during
propagation in a dispersive linear medium. In optics, a
wavepacket localized in space (that is, a narrow optical
beam) or in time (a short pulse) will, in general, broaden.
In temporal pulses, this broadening is due to chromatic
dispersion: The pulse’s frequency components have dif-
ferent velocities. The narrowest pulse forms when the
relative phase among all components is zero. However,
as the pulse propagates, the frequency components acquire
different phases and the pulse broadens.

For “pulses” in space (beams), the broadening is
caused by diffraction. A quasi-monochromatic light beam
propagating in a medium of refractive index n in an
arbitrary direction z can be viewed as a linear superposi-
tion of plane waves, all having the same wavenumber
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Beams of light, prevented from diverging
by nonlinear media, exhibit particle-like
behavior, as do waves in many other
nonlinear systems in nature.

Mordechai Segev and George Stegeman

k =nowlc but with different
angles a with respect to z.
Therefore, each component
propagates at a different
phase velocity with respect
to z. As for temporal pulses,
each plane-wave component
acquires a different phase
and the beam broadens (dif-
fracts). In general, the nar-
rower the initial beam, the
more it diverges.

Spatial spreading can be eliminated by waveguiding.
In a dielectric waveguide, a beam propagating in a high-
index medium undergoes total internal reflection from
boundaries with lower index media. When these reflec-
tions constructively interfere, the beam becomes trapped
between the boundaries and forms what is called a guided
mode. A planar dielectric waveguide is called a (1+1)D
waveguide because propagation occurs along one coordi-
nate (2), diffraction along a single transverse coordinate
(y) and guidance along the third coordinate (x). An optical
fiber is a (2+1)D waveguide with spatial guidance in both
transverse dimensions.

In a manner similar to Russell’s observation, the
broadening of pulses can be eliminated with nonlinearity,
in which material properties change in the presence of
light and can counteract dispersion or diffraction by what
is termed light-induced lensing. This process eliminates
the accumulated phase differences between the compo-
nents composing the “pulse,” thus allowing a nondiffract-
ing, nondispersing beam to propagate. Short temporal
pulses that do not change shape as they propagate in a
dispersive material such as an optical fiber are called
optical temporal solitons. They were predicted in 1973
by Akira Hasegawa and Frederick Tappert, and first
observed in 1980 by Linn Molenhauer, Roger Stolen and
Jim Gordon. An optical nonlinearity can be also be used
to confine a “pulse in space” (a narrow beam) if a beam
modifies the refractive index to generate an effective
positive lens—that is, if the refractive index in the center
of the beam becomes larger than that at the beam’s
margins, thus resembling a waveguide. When the beam
that has induced the waveguide is a guided mode of the
induced waveguide, the beam becomes “self-trapped” with
a very narrow diameter. Figure 1 includes a top view
photograph of a 10 um wide spatial soliton propagating
in a photorefractive crystal. The beam is visible because
of stray scattering in the crystal.

Kerr-type spatial solitons

The mathematical foundations of solitons pose a difficult
theoretical challenge. However, the problem is soluble
exactly in (1+1)D waveguides when the nonlinearity is
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due to weak symmetric anharmonicity in the polarization
response of a medium to an applied optical field, a common
nonlinearity. This situation leads to a refractive index of
the form n = ny + nyl, where n is the background refrac-
tive index and I(r,t) is the intensity of the electromagnetic

wave. This behavior is the optical Kerr effect, and it
produces the self-lensing needed for spatial solitons. Fol-
lowing Michael Hercher’s 1964 observation of the self-fo-
cusing of laser light, Raymond Chiao, Elsa Garmire and
Charles Townes theorized that the nonlinear Schrédinger
equation with a cubic potential governs the phenomenon
and that a beam propagating in a (1+1)D Kerr medium
can self-trap. Several years later, Vladimir E. Zakharov
and Alexei Borisovich Shabat solved the full (1+1)D prob-
lem analytically, using a method called inverse scattering.
These nonlinear Schrodinger equation soliton solutions
have properties that are unique in nonlinear dynamic
systems. For example, upon collision, these solitons con-
serve power, velocity and their number, and interactions
among solitons are fully elastic.

In 1965, Paul Kelley argued that when a circular
beam is launched into a Kerr medium it undergoes “cata-
strophic self-focusing” and eventually breaks up—that is,
no stable three-dimensional solitons exist. Self-trapping
requires a robust cancellation between the beam’s diffrac-
tion length and the focal length of the self-induced lens.
A stable soliton can be formed when fluctuations in power
are compensated by corresponding changes in beam width
and vice versa. However, for (2+1)D solitons, stationary
propagation occurs at only one peak power, and fluctua-
tions lead to catastrophic self-focusing in a runaway proc-
ess that results in material damage, as observed in early
experiments. Beams that are narrow in one dimension,
uniform in the other and propagate along the third direc-
tion are also unstable: The “stripe” beam disintegrates
into many filaments and becomes “transversely unstable,”
as Zakharov and Alexander Rubenchik showed in 1974.
The end result is that Kerr solitons are stable only in
(1+1)D waveguides—that is, in waveguides but not in bulk
media, typical of all Kerr solitons in nature. Such solitons
were observed first in liquid carbon disulfide (for which
an interference grating introduced the necessary trans-
verse stability in the dimension normal to the plane of

FIGURE 1. SPATIAL SOLITON
and ordinary beam. Top:
Photograph of a 10 um wide
spatial soliton propagating in a
photorefractive crystal.
Bottom: Beam in the same
crystal diffracting naturally
when the nonlinearity is
turned off. (From M. Shih ez
al., ref. 8, second paper.)

diffraction) and later they were observed in a glass
waveguide. Soon thereafter, interactions between spatial
solitons (collisions) were demonstrated by both groups of
observers, confirming the elastic collision properties of Kerr
solitons.2 At that point, it seemed as if Kerr solitons were
well understood and that other kinds of self-trapped beams—
especially (2+1)D solitons—were less likely to exist.

Saturable media

One experiment contradicted the consensus that (2+1)D
solitons are unstable. In 1974, John E. Bjorkholm and
Arthur Ashkin at AT&T Bell Laboratories demonstrated
self-trapping of a laser beam of circular cross section in
sodium vapor in the close spectral vicinity of a resonant
transition.? They conjectured that the effects were due
to the saturable nature of the optical nonlinearity.

As early as 1969, Eddie Daws and John H. Marburger
at the University of Southern California had found nu-
merically that saturable nonlinearities are able to arrest
the catastrophic collapse and lead to stable (2+1)D soli-
tons. Other researchers reached similar conclusions for
other forms of saturable nonlinearities in plasmas. Satu-
rable nonlinearities typically arise because resonances
give rise to a maximum change in the optical susceptibility
and thus higher-order (than ny) nonlinearities are included
to describe the arrest in the increase in index. However,
saturable nonlinearities lead to nonintegrable equations,
making analytical predictions impossible. As a result,
experimental groups focused on temporal solitons. With
the exception of Kerr solitons,? spatial soliton experiments
were deserted until 1990.

The 1990s have witnessed a resurgence of interest in
the theoretical aspects of spatial solitons. In 1991, Allan
W. Snyder’s group at the Australian National University
in Canberra expanded upon a 1962 idea by Gurgen Asho-
tovich Askar’yan of the Institute of General Physics in
Moscow. Askar’yan had suggested that a soliton forms
when an optical beam induces a waveguide (by way of the
nonlinearity) and at the same time is a guided mode of
the waveguide it induces. Snyder’s group developed this
idea into a “self-consistency” methodology* that offers
much insight into the dynamics of spatial solitons, their
stability and interactions. It provides a simple explana-
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tion of why self-trapped circular beams are stable in a
saturable nonlinear medium. Saturation of the nonlinear-
ity implies that there is a maximum value for the change
in the refractive index—for example, of the form An(l) =
Ang I + Iy, so that as I > I, An(I) approaches Ang,
asymptotically. Just like a Kerr medium, a saturable
medium acts as a focusing lens at high intensities. How-
ever, because the index change cannot exceed Ang,, the
induced lens (waveguide) eventually becomes wider in-
stead of stronger and has less focusing power at its center.
Thus, the runaway process that leads to catastrophic
collapse in Kerr media can be arrested. Another implica-
tion of the progressive broadening of the waveguide with
increasing intensity is an increase in the numerical aperture,
which leads to a multimode waveguide. The induced poten-
tial well becomes broader and more bound solutions exist.

In the early 1990s, the discovery of two new types of
solitons, each in a nonlinearity of a saturable nature,
rekindled experimental interest in spatial solitons. Pho-
torefractive solitons and quadratic solitons exist in both
(1+1) and (2+1) dimensions, and give rise to a whole new
family of soliton interactions in three dimensions and a
variety of other rich phenomena.

Photorefractive solitons. Photorefractive materi-
als typically are dielectric noncentrosymmetric single crys-
tals with second-order nonlinearities. Through the elec-
tro-optic effect, a DC electric field E modifies the refractive
index as An « E. Photorefractive materials have “foreign”
atoms (dopants) hosted in the crystal, with energy levels
inside the lattice’s “forbidden gap,” which is the range of
energies not available to electrons in the undoped crystal.
Upon illumination, these dopants contribute free charges,
which redistribute following the spatial dependence of the
optical intensity. In the usual context, photorefractives
are used to record volume holograms for applications such
as optical data storage and phase conjugate mirrors. A
soliton is a different animal: It entails self-action of a
beam and is unrelated to holography.

The existence of photorefractive solitons was predicted
by Segev, Bruno Crosignani and their coworkers in 1992
and demonstrated a year later by Greg Salamo and his
coworkers.> Over the last five years, several different
types of photorefractive solitons have been discovered,
each resulting from a different nonlinear mechanism that
is inherently saturable, and each exhibiting a different
dependence of An on the optical intensity. Here we focus
on one type: the photorefractive screening soliton. It is
created when a narrow beam of light is directed into a

FIGURE 3. INTERACTIONS BETWEEN
SOLITONS can be coherent or incoherent.
These profiles of electric field, intensity
and index of refraction illustrate these
two types of interaction, which are
discussed in the text on page 46. Note
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FIGURE 2. QUADRATIC SOLITONS form at intensities above a
threshold. Plotted here are the intensity distributions of the
fundamental (w) beam at the output plane, for three different
input intensities. (From W. E. Torruellas ez 4L, in ref. 10.)

photorefractive crystal across which a voltage has been
applied transversely. In the illuminated region, the den-
sity of free electrons increases, which means that the
conductivity increases and the resistivity decreases. Be-
cause the resistivity is not uniform across the crystal, the
voltage drops primarily in the dark regions, leading to a
large space-charge field E,, in those regions and to a lower
field in the illuminated region. The refractive index
changes by An < E . by means of the electro-optic effect.
If An < 0, the large negative index change in the dark
regions creates a “graded index waveguide” that guides
the beam that has generated it, thereby eliminating dif-
fraction. The actual dependence of An on the optical
intensity for (1+1)D screening solitons is An o 1/ + Ig,y),
where I, is the dark irradiance—a material parameter
proportional to the conductivity of the crystal in the dark.

The subsequent evolution of the photorefractive soli-
ton family has been meteoric. Screening solitons were
predicted in 1994,° following a report from researchers at
the Instituto Nacional de Astrofisica, Optica y Electrénica,
in Puebla, Mexico, of steady-state self-focusing effects in
biased photorefractive media,” and a soliton observation
followed soon.® Several other types of photorefractive
solitons have also been found. Quasi-steady-state solitons
exist during the finite time in which an externally applied
field is slowly being screened by the space-charge field.®
Photovoltaic solitons rely on the bulk photovoltaic effect

Incoherent interaction

 out of phase Random phase

that the sum of the intensities of the
overlapping soliton tails is not as great in
the case of incoherent interactions as in
the case of constructive interference of
in-phase coherent interactions.
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FIGURE 4. SOLITON COLLISIONS. Top:
Photograph of an (attractive) incoherent
collision between two photorefractive
screening solitons in which the solitons
pass through each other at a large angle.
Bottom: Fusion between the same
solitons when the collision occurs at a
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to create the space-charge field. They were predicted in
1994 and observed a year later. A fourth type of photore-
fractive soliton was demonstrated in 1996 in semiconduc-
tors such as indium phosphide, in which both electrons
and holes help form the space-charge field. Finally, soli-
tons in centrosymmetric photorefractive media, in which
An o« 1 + I;,10%, were predicted and demonstrated.

Two additional noteworthy properties are common to
all photorefractive solitons. Solitons can be generated
with optical power levels of less than a microwatt, because
An depends on the ratio /Iy, and not on the absolute
value of the optical intensity I, and because Igqy is very
low in photorefractive materials. The drawback is that
the response time scales as 1/ + I3,) and can be as long
as seconds at these power levels with 10 um wide solitons.
Also, because the material’s response is wavelength de-
pendent, solitons generated with microwatt powers can be
used to guide and steer powerful (watts) beams at wave-
lengths in which the material is less photosensitive.

Quadratic solitons. There are three basic differ-
ences between quadratic solitons and all other spatial
solitons. First, in quadratic solitons, the optical fields do
not modify the medium’s refractive index or other prop-
erties. Second, these solitons rely solely on second-order
nonlinearities. Third, self-trapping exists by virtue of the
strong interaction and energy exchange between two or
more beams at different frequencies. The nonlinear po-
larizations induced are the product of two or more inter-
acting beams. Hence the fields generated are narrowed
in space, and the result offsets diffraction. In addition,
they are unique in that they consist of all of the beams
strongly coupled by the second-order nonlinearity. For
second-harmonic generation, this unique feature means at
least one fundamental field and the harmonic field. Fur-
thermore, the properties of quadratic solitons depend on the
detuning from phase matching (momentum conservation
among the interacting beams). Thus, quadratic solitons
require media in which phase matching is possible and thus
exist only at reasonable powers over a narrow range of
parameters. Although such solitons exist for any second-
order process and indeed have been observed in optical
parametric generators and amplifiers, they have been studied

0 . .
100mm - dhallow angle. Shown are the intensity

profiles and photographs of beams A and
B at the entrance plane (left); beams A
and B at the exit plane, each measured
when the other is absent (middle); and
the fused beam at the exit plane (right).
(From ref. 14.)

primarily during second-harmonic generation.

Quadratic solitons were first predicted in the mid-
1970s by Yuri Karamzin and Anatoly Sukhorukov. Twenty
years passed before their stability was shown® and they
were observed experimentally in (2+1)D and (1+1)D
waveguides.® In those first (2+1)D experiments, both the
output fundamental and harmonic beams above a thresh-
old intensity collapsed from their diffracted beam sizes to
diameters less than the fundamental input diameter, as
shown in figure 2. The experiments showed a key point—
that the second harmonic required for a soliton could be
generated within the crystal, thus forming the soliton.
Further experiments by Russell Fuerst and his coworkers
have shown that three-wave-mixing quadratic solitons
(produced with two input beams) exist over a wide range
of relative compositions of the three waves. Another
interesting feature is the locking in space of the soliton’s
components to defeat beam “walk-off,” which occurs when
the fundamental and harmonic beams have different en-
ergy propagation directions (Poynting vectors). This lock-
ing was observed at the Center for Research and Educa-
tion in Optics and Lasers at the University of Central
Florida in Orlando, and explained by Lluis Torner and his
coworkers at the Polytechnic University of Catalonia in
Barcelona, Spain.!

Incoherent solitons

Soliton physics appears to be evolving in a new direction,
toward a focus on what are termed incoherent solitons.
Until 1995, all soliton experiments employed a coherent
“pulse,”—that is, the phases were correlated across the
beam. However, pulses (wavepackets) do not necessarily
need to be coherent. For example, one can focus into a
spot a beam from a natural source such as the Sun or an
incandescent light bulb. Can such a beam self-trap in a
nonlinear medium?

In 1996, Mordechai Segev’s group at Princeton Uni-
versity demonstrated self-trapping of beams in which the
phase varied randomly in time and space across any plane
intersecting the beam." The first experiment employed
a quasi-monochromatic light beam that was partially spa-
tially incoherent: A laser beam was sent through a rotat-
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FIGURE 5. COLLISION OF PARALLEL SOLITONS. Plotted is the
output from a collision between two (1+1)D quadratic
solitons launched in parallel at the input. The relative phase
angles for the four cases are shown. (From ref. 15.)

ing diffuser that introduced a new, random phase pattern
every microsecond. The beam was launched into a slowly
responding photorefractive crystal and, under appropriate
conditions, the envelope of this beam self-trapped into one
narrow filament. In a later experiment, Matthew Mitchell
and Segev demonstrated that an incoherent beam of white
light—that is, a “pulse” that is both temporally and spa-
tially incoherent—can self-trap in the same medium.'? In
that experiment, the self-trapped beam originated from
an incandescent light bulb that emitted light with wave-
lengths between 380 and 720 nm. Another experiment
demonstrated self-trapping of dark incoherent “beams”™—
that is, one- or two-dimensional voids nested in a spatially
incoherent beam.!!

To understand incoherent solitons, one must under-
stand some aspects of incoherent light. A spatially inco-
herent beam consists of both bright and dark patches, or
speckles, caused by a random phase distribution that
varies randomly with time. The envelope of this beam is
defined by the time-averaged intensity. Because every
small bright speckle contributes to the diffraction, in the
limiting case of speckles much smaller than the beam size,
diffraction is dominated by the degree of coherence—that
is, the speckle size rather than the diameter of the beam’s
envelope. Such an incoherent beam cannot self-trap in
an instantaneous nonlinearity because each speckle forms
a small lens and captures a small fraction of the beam,
thus completely fragmenting the beam’s envelope. On the
other hand, in media with nonlinear response times much
longer than the phase fluctuation time across the beam,
the nonlinearity responds to the time-averaged envelope
and not to the instantaneous speckles. In such media,
the beam’s envelope induces a multimode waveguide,
which guides incoherent solitons.

The theory of incoherent solitons has been presented
in recent papers by Demetri Christodoulides’s group of
Lehigh University and Segev’s Princeton group.’? It is
now apparent that self-trapping reshapes the statistics of
the incoherent beam making it possible to engineer the
beam’s coherence properties. The rapid progress in this
direction brings about many interesting fundamental ideas
(such as coherence control) and possible applications for
reconfigurable optical interconnects and beam steering.
Such applications could use self-trapped beams from in-
coherent sources such as light-emitting diodes.

Soliton interactions

Among all soliton properties, perhaps the most fascinating
are the interactions, or “collisions,” between solitons, be-
cause solitons interact like particles in many respects.
The interactions occur when the tails of the soliton fields
overlap in the space between them. Solitons can interact
in two ways: coherently or incoherently. (See figure 3.)
Coherent interactions occur when the nonlinear
medium responds instantaneously to interference effects
between the overlapping beams, through, for example, the
optical Kerr effect or a quadratic nonlinearity. For slow
nonlinearities, such as photorefractive or thermal ones,
the relative phase between the interacting beams must
be kept stationary for times longer than the medium’s

46  AUGUST 1998  PHYSICS TODAY

T T T T T T
-200 0 200 -200 0 200

INTENSITY

3
Nl‘:‘i‘

T T T T T
-200 0 200 -200 0 260
POSITION (micrometers)

response time. For in-phase beams, the intensity and
hence the refractive index between the beams’ induced
waveguides are increased. This development attracts
more light to the center, moving the solitons toward it,
and so the solitons appear to attract each other. When
the interacting beams are 7 out of phase, they interfere
destructively, reducing the index in the central region, and
the solitons “repel.”

Incoherent interactions occur when the relative
phase between the beams varies much faster than the
response time of the medium. In this case, the medium
responds only to the time-averaged (over a time longer
than the response time) intensity. Therefore, irrespective
of the solitons’ relative phase, the intensity in the central
region between the solitons is increased. In a self-focusing
medium, more light is “attracted” toward the center and
the solitons “attract” each other.

Collisions in Kerr media exhibit several important
differences in their outcome vis-a-vis collision processes
in saturable nonlinear media. First, in Kerr media, all
solitons are (1+1)D, the collisions occur in a single plane
and they are fully elastic. This situation implies that the
number of solitons is conserved and that no energy is lost
to radiation waves. In addition, the propagation velocities
of the solitons recover to their initial values after each
collision. This equivalence between solitons and particles
is the reason for the term “soliton.” Furthermore, if the
input soliton trajectories are separated by some angle, the
solitons simply go through each other and remain unaf-
fected by the collision, apart from a tiny lateral displace-
ment and a small change in absolute phase. For an
attractive collision of parallel launched solitons with small
lateral separation, the solitons move toward each other,
combine and separate periodically. On the other hand, in
a repulsive Kerr collision, the solitons always move away
from each other.?

Collisions in saturable nonlinear media are much



Input beam A

Input beam B

Input plane Output plane after 6.5 mm

richer than those in Kerr media and consequently are
more interesting, primarily for two reasons. First, satu-
rable nonlinear media can support (2+1)D solitons and
therefore collisions can occur in a full three dimensions,
giving rise to new effects that cannot exist in Kerr media.
Second, the self-induced waveguides in saturable non-
linear media can guide more than one mode, giving rise
to phenomena such as soliton fusion, fission and annihi-
lation. In 1992 S. Gatz and Joachim Herrmann at the
Max Born Institute for Nonlinear Optics in Berlin found
that solitons colliding coherently at shallow relative angles
in a saturable nonlinearity can fuse together. Theorists
Snyder and Adrian Sheppard subsequently showed that
colliding solitons can undergo fission—that is, generate
additional solitons—or annihilate each other.* Their ex-
planation was elegant: One needs to compare the collision
angle to the complementary critical angle above which
total internal reflection and guiding occur. For a collision
angle larger than that critical angle, the solitons simply
go through each other. For “shallow” angle collisions, the
beams couple light into each other’s induced waveguide.
Experimentally, soliton collisions leading to fusion
have been observed in all kinds of saturable nonlinear
media: atomic vapor,’® photorefractive®* and quadratic.®
The experimental results in figure 4 show an attractive
incoherent collision between photorefractive solitons at
large angles (top), and fusion (bottom) for small collision
angles. Snyder and Sheppard also predicted that two
colliding solitons may give birth to a new soliton and that
three solitons can emerge after the collision—as has re-
cently been observed.’® Figure 5 shows an example of
coherent soliton collisions in (1+1)D waveguides for quad-
ratic solitons. Phase differences intermediate between 0
and 7 lead to energy exchange between solitons. The
energy flow reverses in going from a phase difference of
/2 to 3m/2. Similar effects have been seen in saturable
media such as carbon disulfide and photorefractives.
Solitons in (2+1) dimensions in saturable nonlinear
media offer an opportunity to examine collisions of solitons
with three-dimensional trajectories. Solitons launched
individually move in their initial trajectories. If they are
launched simultaneously so that their attraction balances
the centrifugal force due to rotation, the solitons can

Observation planes

FIGURE 6. SPIRALING of two colliding
photorefractive screening solitons with
initial trajectories that do not lie in the
same plane. Shown are photographs of
the optical beams. Left: Beams A and B
about 14 pm apart at the input plane.
Middle: The spiraling soliton pair after
6.5 mm of propagation. Right: The
spiraling pair after 13 mm of
propagation. The triangles indicate the
centers of the corresponding diffracting
beams. After 6.5 mm the solitons have
spiraled about each other by 270°; after
13 mm the spiraling angle doubles to
540°. Note that the spiraling 1s in
elliptical orbits (From ref. 18.)

Output plane after 13 mm

capture each other into orbit and spiral about each other,
like celestial objects or moving charged particles do. This
effect, suggested first in the context of coherent collisions,’
has recently been demonstrated (figure 6) by employing
an incoherent collision between photorefractive solitons.'®
When the initial distance between the solitons is in-
creased, the solitons’ trajectories bend slightly toward each
other, but their relative velocity is too. large to form a
bound pair. Conversely, if their separation is too small,
they spiral in a converging orbit and eventually fuse.
Spiraling—fusion effects have also been observed by Barry
Luther-Davies and his coworkers at the Australian Na-
tional University.l® These observations lead to the inter-
esting question: Do interacting spatial solitons conserve
angular momentum?

Variety of features

Space limitations prevent us from discussing the many
other interesting features of optical spatial solitons, but
we will close by at least identifying a few of the key issues
associated with them. In self-defocusing media, for ex-
ample, solitons take on the form -of vortices in (2+1)
dimensions or dark stripes in (1+1) dimensions.! (2+1)D
waveguides feature vortices and (1+1)D waveguides carry
dark solitons, which are linear voids borne on uniform
beams. Another important topic consists of multicompo-
nent solitons, in which several electric-field components
participate in the self-trapping process, by jointly creating
an induced waveguide and guiding themselves in it. Yet
another issue is the connection between stable solitons in
one dimension and instabilities in a higher dimension.
Different origins for the instabilities (such as transverse,
longitudinal and azimuthal instabilities) have been inves-
tigated recently and the results have shed new light on
nonlinear dynamics.

Although the propagation distances involved in optical
spatial solitons are certainly not on the scale of the
temporal solitons in optical fibers, which have pioneered
solitons in optics, the variety of nonlinearities accessible
is far broader and the physical phenomena are much
richer. Here we have glanced at some of the rapid pro-
gress, excitement and new physics that are emerging from
investigations of optical spatial solitons. One can expect
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that such investigations will lead to a deeper under-
standing of nonlinear dynamics, especially in view of the
large and continuously increasing number of features that
have been identified to be common to all solitons in nature.
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optical solitons, who died on 25 January 1998. Our research is
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