
SELF-TRAPPING OF OPTICAL 
BEAMS: SPATIAL S0LIT0NS 

Although people have al­
ways been fascinated by 

visual manifestations of non­
linear wave phenomena, 
such as tsunamis and tidal 
waves, the first scientifically 
documented report of a self­
trapped wave did not come 
until 1834, when a Scottish 
scientist, John S. Russell, ob­
served a "rounded smooth 

Beams of light, prevented from diverging 
by nonlinear media, exhibit particle-like 

behavior, as do waves in many other 
nonlinear systems in nature. 

k = nw/c but with different 
angles a with respect to z. 
Therefore, each component 
propagates at a different 
phase velocity with respect 
to z . As for temporal pulses, 
each plane-wave component 
acquires a different phase 
and the beam broadens ( dif­
fracts ). In general, the nar­
rower the initial beam, the 
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and well defined heap of water" propagating in a narrow 
and shallow canal "without change of form or diminution 
of speed." The water was calm on both sides of this 
unusual wave, and Russell noted that it had the form of 
a "solitary elevation ." 

Fifty years later, two Dutchmen, Diederik Johannes 
Korteweg and Gustave de Vries, realized that this phe­
nomenon required an unusually large amplitude and that 
the medium must behave in a fundamentally different 
manner to waves of different amplitudes-that is, its 
behavior must be nonlinear. In 1965, Norman Zabusky 
and Martin Kruskal realized that such localized pulses, 
or "wavepackets," maintain their identities even when they 
undergo collisions with each other, and that they conserve 
power and linear momentum. Zabusky and Kruskal con­
cluded that these pulses behave like particles and named 
them solitons.1 An immense amount of research soon fol­
lowed, and solitons were observed in many different branches 
of science. This article concentrates on one particular type 
of soliton, which has experienced a minirevolution in the last 
few years: the optical spatial soliton. 

In nature, pulses have a tendency to broaden during 
propagation in a dispersive linear medium. In optics, a 
wavepacket localized in space (that is, a narrow optical 
beam) or in time (a short pulse) will, in general, broaden. 
In temporal pulses, this broadening is due to chromatic 
dispersion: The pulse's frequency components have dif­
ferent velocities. The narrowest pulse forms when the 
relative phase among all components is zero. However, 
as the pulse propagates, the frequency components acquire 
different phases and the pulse broadens. 

For "pulses" in space (beams), the broadening is 
caused by diffraction. A quasi-monochromatic light beam 
propagating in a medium of refractive index n in an 
arbitrary direction z can be viewed as a linear superposi­
tion of plane waves, all having the same wavenumber 
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more it diverges . 
Spatial spreading can be eliminated by waveguiding. 

In a dielectric waveguide, a beam propagating in a high­
index medium undergoes total internal reflection from 
boundaries with lower index media. When these reflec­
tions constructively interfere, the beam becomes trapped 
between the boundaries and forms what is called a guided 
mode. A planar dielectric waveguide is called a (l+l)D 
waveguide because propagation occurs along one coordi­
nate (z), diffraction along a single transverse coordinate 
(y) and guidance along the third coordinate (x). An optical 
fiber is a (2+ l )D waveguide with spatial guidance in both 
transverse dimensions. 

In a manner similar to Russell's observation, the 
broadening of pulses can be eliminated with nonlinearity, 
in which material properties change in the presence of 
light and can counteract dispersion or diffraction by what 
is termed light-induced lensing. This process eliminates 
the accumulated phase differences between the compo­
nents composing the "pulse," thus allowing a nondiffract­
ing, nondispersing beam to propagate. Short temporal 
pulses that do not change shape as they propagate in a 
dispersive material such as · an optical fiber are called 
optical temporal solitons. They were predicted in 1973 
by Akira Hasegawa and Frederick Tappert, and first 
observed in 1980 by Linn Molenhauer, Roger Stolen and 
Jim Gordon. An optical nonlinearity can be also be used 
to confine a "pulse in space" (a narrow beam) if a beam 
modifies the refractive index to generate an effective 
positive lens-that is, if the refractive index in the center 
of the beam becomes larger than that at the beam's 
margins, thus resembling a waveguide. When the beam 
that has induced the waveguide is a guided mode of the 
induced waveguide, the beam becomes "self-trapped" with 
a very narrow diameter. Figure 1 includes a top view 
photograph of a 10 µ,m wide spatial soliton propagating 
in a photorefractive crystal. The beam is visible because 
of stray scattering in the crystal. 

Kerr-type spatial solitons 
The mathematical foundations of solitons pose a difficult 
theoretical challenge. However, the problem is soluble 
exactly in (l+l)D waveguides when the nonlinearity is 
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due to weak symmetric anharmonicity in the polarization 
response of a medium to an applied optical field, a common 
nonlinearity. This situation leads to a refractive index of 
the form n = n0 + n2l, where n0 is the background refrac­
tive index and l(r,t ) is the intensity of the electromagnetic 
wave. This behavior is the optical Kerr effect, and it 
produces the self-lensing needed for spatial solitons. Fol­
lowing Michael Hercher's 1964 observation of the self-fo­
cusing of laser light, Raymond Chiao, Elsa Garmire and 
Charles Townes theorized that the nonlinear Schriidinger 
equation with a cubic potential governs the phenomenon 
and that a beam propagating in a (l+l)D Kerr medium 
can self-trap. Several years later, Vladimir E. Zakharov 
and Alexei Borisovich Shabat solved the full (l+l)D prob­
lem analytically, using a method called inverse scattering. 
These nonlinear Schriidinger equation soliton solutions 
have properties that are unique in nonlinear dynamic 
systems. For example, upon collision, these solitons con­
serve power, velocity and their number, and interactions 
among solitons are fully elastic. 

In 1965, Paul Kelley argued that when a circular 
beam is launched into a Kerr medium it undergoes "cata­
strophic self-focusing" and eventually breaks up-that is, 
no stable three-dimensional solitons exist. Self-trapping 
requires a robust cancellation between the beam's diffrac­
tion length and the focal length of the self-induced lens. 
A stable soliton can be formed when fluctuations in power 
are compensated by corresponding changes in beam width 
and vice versa. However, for (2+1)D solitons, stationary 
propagation occurs at only one peak power, and fluctua­
tions lead to catastrophic self-focusing in a runaway proc­
ess that results in material damage, as observed in early 
experiments. Beams that are narrow in one dimension, 
uniform in the other and propagate along the third direc­
tion are also unstable: The "stripe" beam disintegrates 
into many filaments and becomes "transversely unstable," 
as Zakharov and Alexander Rubenchik showed in 1974. 
The end result is that Kerr solitons are stable only in 
(l+l)D waveguides-that is, in waveguides but not in bulk 
media, typical of all Kerr solitons in nature. Such solitons 
were observed first in liquid carbon disulfide (for which 
an interference grating introduced the necessary trans­
verse stability in the dimension normal to the plane of 

FIGURE 1. SPATIAL SOLITON 

and ordinary beam. Top: 
Photograph of a 10 µ,m wide 
spatial soliton propagating in a 
photorefractive crystal. 
Bottom: Beam in the same 
crystal diffracting naturally 
when the nonlinearity is 
turned off. (From M. Shih et 

al., ref. 8, second paper.) 

diffraction) and later they were observed in a glass 
waveguide. Soon thereafter, interactions between spatial 
solitons (collisions) were demonstrated by both groups of 
observers, confirming the elastic collision properties of Kerr 
solitons.2 At that point, it seemed as if Kerr solitons were 
well understood and that other kinds of self-trapped beams­
especially (2+ l)D solitons-were less likely to exist. 

Saturable media 
One experiment contradicted the consensus that (2+1)D 
solitons are unstable. In 1974, John E. Bjorkholm and 
Arthur Ashkin at AT&T Bell Laboratories demonstrated 
self-trapping of a laser beam of circular cross section in 
sodium vapor in the close spectral vicinity of a resonant 
transition.3 They conjectured that the effects were due 
to the saturable nature of the optical nonlinearity. 

As early as 1969, Eddie Daws and John H. Marburger 
at the University of Southern California had found nu­
merically that saturable nonlinearities are able to arrest 
the catastrophic collapse and lead to stable (2+ l )D soli­
tons. Other researchers reached similar conclusions for 
other forms of saturable nonlinearities in plasmas. Satu­
rable nonlinearities typically arise because resonances 
give rise to a maximum change in the optical susceptibility 
and thus higher-order (than n2) nonlinearities are included 
to describe the arrest in the increase in index. However, 
saturable nonlinearities lead to nonintegrable equations, 
making analytical predictions impossible. As a result, 
experimental groups focused on temporal solitons. With 
the exception of Kerr solitons, 2 spatial soliton experiments 
were deserted until 1990. 

The 1990s have witnessed a resurgence of interest in 
the theoretical aspects of spatial solitons. In 1991, Allan 
W. Snyder's group at the Australian National University 
in Canberra expanded upon a 1962 idea by Gurgen Asho­
tovich Askar'yan of the Institute of General Physics in 
Moscow. Askar'yan had suggested that a soliton forms 
when an optical beam induces a waveguide (by way of the 
nonlinearity) and at the same time is a guided mode of 
the waveguide it induces. Snyder's group developed this 
idea into a "self-consistency'' methodology4 that offers 
much insight into the dynamics of spatial solitons, their 
stability and interactions. It provides a simple explana-
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tion of why self-trapped circular beams are stable in a 
saturable nonlinear medium. Saturation of the nonlinear­
ity implies that there is a maximum value for the change 
in the refractive index-for example, of the form !1n(J) = 
11nsat 1/(l + 1 •• 1), so that as I » I sat, 11n(I) approaches 11nsat 
asymptotically. Just like a Kerr medium, a saturable 
medium acts as a focusing lens at high intensities. How­
ever, because the index change cannot exceed 11nsat, the 
induced lens (waveguide) eventually becomes wider in­
stead of stronger and has less focusing power at its center. 
Thus, the runaway process that leads to catastrophic 
collapse in Kerr media can be arrested. Another implica­
tion of the progressive broadening of the waveguide with 
increasing intensity is an increase in the numerical aperture, 
which leads to a multimode waveguide. The induced poten­
tial well becomes broader and more bound solutions exist. 

In the early 1990s, the discovery of two new types of 
solitons, each in a nonlinearity of a saturable nature, 
rekindled experimental interest in spatial solitons. Pho­
torefractive solitons and quadratic solitons exist in both 
(1+1) and (2+1) dimensions, and give rise to a whole new 
family of soliton interactions in three dimensions and a 
variety of other rich phenomena. 

Photorefractive solitons. Photorefractive materi­
als typically are dielectric noncentrosymmetric single crys­
tals with second-order nonlinearities. Through the elec­
tro-optic effect, a DC electric field E modifies the refractive 
index as 11n oc E. Photorefractive materials have "foreign" 
atoms (dopants) hosted in the crystal, with energy levels 
inside the lattice's "forbidden gap," which is the range of 
energies not available to electrons in the undoped crystal. 
Upon illumination, these dopants contribute free charges, 
which redistribute following the spatial dependence of the 
optical intensity. In the usual context, photorefractives 
are used to record volume holograms for applications such 
as optical data storage and phase conjugate mirrors. A 
soliton is a different animal: It entails self-action of a 
beam and is unrelated to holography. 

The existence ofphotorefractive solitons was predicted 
by Segev, Bruno Crosignani and their coworkers in 1992 
and demonstrated a year later by Greg Salama and his 
coworkers.5 Over the last five years, several different 
types of photorefractive solitons have been discovered, 
each resulting from a different nonlinear mechanism that 
is inherently saturable, and each exhibiting a different 
dependence of 11n on the optical intensity. Here we focus 
on one type: the photorefractive screening soliton. It is 
created when a narrow beam of light is directed into a 
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FIGURE 2. QUADRATIC SOLITONS form at intensities above a 
threshold. Plotted here are the intensity distributions of the 
fundamental (w) beam at the output plane, for three different 
input intensities. (From W. E. Torruellas et al., in ref. 10.) 

photorefractive crystal across which a voltage has been 
applied transversely. In the illuminated region, the den­
sity of free electrons increases, which means that the 
conductivity increases and the resistivity decreases. Be­
cause the resistivity is not uniform across the crystal, the 
voltage drops primarily in the dark regions, leading to a 
large space-charge field E sc in those regions and to a lower 
field in the illuminated region. The refractive index 
changes by 11n ex E sc by means of the electro-optic effect. 
If 11n < 0, the large negative index change in the dark 
regions creates a "graded index waveguide" that guides 
the beam that has generated it, thereby eliminating dif­
fraction. The actual dependence of 11n on the optical 
intensity for (1 + l)D screening solitons is 11n ex 1/(l + I aark), 
where I aark is the dark irradiance-a material parameter 
proportional to the conductivity of the crystal in the dark. 

The subsequent evolution of the photorefractive soli­
ton family has been meteoric. Screening solitons were 
predicted in 1994,6 following a report from researchers at 
the Instituto Nacional de Astrofisica, Optica y Electr6nica, 
in Puebla, Mexico, of steady-state self-focusing effects in 
biased photorefractive media,7 and a soliton observation 
followed soon.8 Several other types of photorefractive 
solitons have also been found. Quasi-steady-state solitons 
exist during the finite time in which an externally applied 
field is slowly being screened by the space-charge field. 5 

Photovoltaic solitons rely on the bulk photovoltaic effect 

Coherent interaction Incoherent interaction FIGURE 3. INTERACTIONS BETWEEN 

SOLITONS can be coherent or incoherent. In phase 1r out of phase 

M These profiles of electric field, intensity 
and index of refraction illustrate these 

two types of interaction, which are 
discussed in the text on page 46. Note 

that the sum of the intensities of the 
overlapping soliton tails is not as great in 

the case of incoherent interactions as in 
the case of constructive interference of 

in-phase coherent interactions. 
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Collision between solitons 
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to create the space-charge field. They were predicted in 
1994 and observed a year later. A fourth type of photore­
fractive soliton was demonstrated in 1996 in semiconduc­
tors such as indium phosphide, in which both electrons 
and holes help form the space-charge field. Finally, soli­
tons in centrosymmetric photorefractive media, in which 
t:i.n cc 1/(I + I dark)2, were predicted and demonstrated. 

Two additional noteworthy properties are common to 
all photorefractive solitons. Solitons can be generated 
with optical power levels ofless than a microwatt, because 
t:i.n depends on the ratio 1/Idark and not on the absolute 
value of the optical intensity I , and because /dark is very 
low in photorefractive materials . The drawback is that 
the response time scales as 1/(I + / dark) and can be as long 
as seconds at these power levels with 10 µ,m wide solitons. 
Also, because the material's response is wavelength de­
pendent, solitons generated with microwatt powers can be 
used to guide and steer powerful (watts) beams at wave­
lengths in which the material is less photosensitive. 

Quadratic solitons. There are three basic differ­
ences between quadratic solitons and all other spatial 
solitons. First, in quadratic solitons, the optical fields do 
not modify the medium's refractive index or other prop­
erties. Second, these solitons rely solely on second-order 
nonlinearities. Third, self-trapping exists by virtue of the 
strong interaction and energy exchange between two or 
more beams at different frequencies . The nonlinear po­
larizations induced are the product of two or more inter­
acting beams. Hence the fields generated are narrowed 
in space, and the result offsets diffraction. In addition, 
they are unique in that they consist of all of the beams 
strongly coupled by the second-order nonlinearity. For 
second-harmonic generation, this unique feature means at 
least one fundamental field and the harmonic field. Fur­
thermore, the properties of quadratic solitons depend on the 
detuning from phase matching (momentum conservation 
among the interacting beams). Thus, quadratic solitons 
require media in which phase matching is possible and thus 
exist only at reasonable powers over a narrow range of 
parameters. Although such solitons exist for any second­
order process and indeed have been observed in optical 
parametric generators and amplifiers, they have been studied 

100 µ,m 

FIGURE 4 . SOLITON COLLISIONS. Top: 
Photograph of an (attractive) incoherent 
collision between two photorefractive 
screening solitons in which the solitons 
pass through each other at a large angle. 
Bottom: Fusion between the same 
solitons when the collision occurs at a 
shallow angle. Shown are the intensity 
profiles and photographs of beams A and 
B at the entrance plane (left); beams A 
and B at the exit plane, each measured 
when the other is absent (middle); and 
the fused beam at the exit plane (right). 
(From ref. 14.) 

primarily during second-harmonic generation. 
Quadratic solitons were first predicted in the mid-

1970s by Yuri Karamzin and Anatoly Sukhorukov. Twenty 
years passed before their stability was shown9 and they 
were observed experimentally in (2+1)D and (l+l )D 
waveguides. 10 In those first (2+ l)D experiments, both the 
output fundamental and harmonic beams above a thresh­
old intensity collapsed from their diffracted beam sizes to 
diameters less than the fundamental input diameter, as 
shown in figure 2. The experiments showed a key point­
that the second harmonic required for a soliton could be 
generated within the crystal, thus forming the soliton. 
Further experiments by Russell Fuerst and his coworkers 
have shown that three-wave-mixing quadratic solitons 
(produced with two input beams) exist over a wide range 
of relative compositions of the three waves. Another 
interesting feature is the locking in space of the soliton's 
components to defeat beam "walk-off," which occurs when 
the fundamental and harmonic beams have different en­
ergy propagation directions (Poynting vectors). This lock­
ing was observed at the Center for Research and Educa­
tion in Optics and Lasers at the University of Central 
Florida in Orlando, and explained by Lluis Torner and his 
coworkers at the Polytechnic University of Catalonia in 
Barcelona, Spain.10 

Incoherent solitons 
Soliton physics appears to be evolving in a new direction, 
toward a focus on what are termed incoherent solitons. 
Until 1995, all soliton experiments employed a coherent 
"pulse,"- that is, the phases were correlated across the 
beam. However, pulses (wavepackets) do not necessarily 
need to be coherent. For example, one can focus into a 
spot a beam from a natural source such as the Sun or an 
incandescent light bulb. Can such a beam self-trap in a 
nonlinear medium? 

In 1996, Mordechai Segev's group at Princeton Uni­
versity demonstrated self-trapping of beams in which the 
phase varied randomly in time and space across any plane 
intersecting the beam.11 The first experiment employed 
a quasi-monochromatic light beam that was partially spa­
tially incoherent: A laser beam was sent through a rotat-
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FIGURE 5. COLLISION OF PARALLEL SOLITONS. Plotted is the 
output from a collision between two (1 + l)D quadratic 

solitons launched in parallel at the input. The relative phase 
angles for the four cases are shown. (From ref. 15.) 

ing diffuser that introduced a new, random phase pattern 
every microsecond. The beam was launched into a slowly 
responding photorefractive crystal and, under appropriate 
conditions, the envelope of this beam self-trapped into one 
narrow filament. In a later experiment, Matthew Mitchell 
and Segev demonstrated that an incoherent beam of white 
light-that is, a "pulse" that is both temporally and spa­
tially incoherent-can self-trap in the same medium. 12 In 
that experiment, the self-trapped beam originated from 
an incandescent light bulb that emitted light with wave­
lengths between 380 and 720 nm. Another experiment 
demonstrated self-trapping of dark incoherent "beams"­
that is, one- or two-dimensional voids nested in a spatially 
incoherent beam.11 

To understand incoherent solitons, one must under­
stand some aspects of incoherent light. A spatially inco­
herent beam consists of both bright and dark patches, or 
speckles, caused by a random phase distribution that 
varies randomly with time. The envelope of this beam is 
defined by the time-averaged intensity. Because every 
small bright speckle contributes to the diffraction, in the 
limiting case of speckles much smaller than the beam size, 
diffraction is dominated by the degree of coherence-that 
is, the speckle size rather than the diameter of the beam's 
envelope. Such an incoherent beam cannot self-trap in 
an instantaneous nonlinearity because each speckle forms 
a small lens and captures a small fraction of the beam, 
thus completely fragmenting the beam's envelope. On the 
other hand, in media with nonlinear response times much 
longer than the phase fluctuation time across the beam, 
the nonlinearity responds to the time-averaged envelope 
and not to the instantaneous speckles. In such media, 
the beam's envelope induces a multimode waveguide, 
which guides incoherent solitons. 

The theory of incoherent solitons has been presented 
in recent papers by Demetri Christodoulides's group of 
Lehigh University and Segev's Princeton group. 12 It is 
now apparent that self-trapping reshapes the statistics of 
the incoherent beam making it possible to engineer the 
beam's coherence properties. The rapid progress in this 
direction brings about many interesting fundamental ideas 
(such as coherence control) and possible applications for 
reconfigurable optical interconnects and beam steering. 
Such applications could use self-trapped beams from in­
coherent sources such as light-emitting diodes. 

Soliton interactions 
Among all soliton properties, perhaps the most fascinating 
are the interactions, or "collisions," between solitons, be­
cause solitons interact like particles in many respects. 
The interactions occur when the tails of the soliton fields 
overlap in the space between them. Solitons can interact 
in two ways: coherently or incoherently. (See figure 3.) 

Coherent interactions occur when the nonlinear 
medium responds instantaneously to interference effects 
between the overlapping beams, through, for example, the 
optical Kerr effect or a quadratic nonlinearity. For slow 
nonlinearities, such as photorefractive or thermal ones, 
the relative phase between the interacting beams must 
be kept stationary for times longer than the medium's 
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response time. For in-phase beams, the intensity and 
hence the refractive index between the beams' induced 
waveguides are increased. This development attracts 
more light to the center, moving the solitons toward it, 
and so the solitons appear to attract each other. When 
the interacting beams are 7T out of phase, they interfere 
destructively, reducing the index in the central region, and 
the solitons "repel." 

Incoherent interactions occur when the relative 
phase between the beams varies much faster than the 
response time of the medium. In this case, the medium 
responds only to the time-averaged (over a time longer 
than the response time) intensity. Therefore, irrespective 
of the solitons' relative phase, the intensity in the central 
region between the solitons is increased. In a self-focusing 
medium, more light is "attracted" toward the center and 
the solitons "attract" each other. 

Collisions in Kerr media exhibit several important 
differences in their outcome vis-a-vis collision processes 
in saturable nonlinear media. First, in Kerr media, all 
solitons are (l+l)D, the collisions occur in a single plane 
and they are fully elastic. This situation implies that the 
number of solitons is conserved and that no energy is lost 
to radiation waves. In addition, the propagation velocities 
of the solitons recover to their initial values after each 
collision. This equivalence between solitons and particles 
is the reason for the term "soliton." Furthermore, if the 
input soliton trajectories are separated by some angle, the 
solitons simply go through each other and remain unaf­
fected by the collision, apart from a tiny lateral displace­
ment and a small change in absolute phase. For an 
attractive collision of parallel launched solitons with small 
lateral separation, the solitons move toward each other, 
combine and separate periodically. On the other hand, in 
a repulsive Kerr collision, the solitons always move away 
from each other. 2 

Collisions in saturable nonlinear media are much 
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FIGURE 6. SPIRALING of two colliding 
photorefractive screening solitons with 
initial trajectories that do not lie in the 
same plane. Shown are photographs of 
the optical beams. Left: Beams A and B 
about 14 µm apart at the input plane. 
Middle: The spiraling soliton pair after 
6.5 mm of propagation. Right: The 
spiraling pair after 13 mm of 
propagation. The triangles indicate the 
centers of the corresponding diffracting 
beams. After 6.5 mm the solitons have 
spiraled about each other by 270°; after 
13 mm the spiraling angle doubles to 
540°. Note that the spiraling is in 
elliptical orbits (From ref. 18.) 
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richer than those in Kerr media and consequently are 
more interesting, primarily for two reasons. First, satu­
rable nonlinear media can support (2+ l )D solitons and 
therefore collisions can occur in a full three dimensions, 
giving rise to new effects that cannot exist in Kerr media. 
Second, the self-induced waveguides in saturable non­
linear media can guide more than one mode, giving rise 
to phenomena such as soliton fusion, fission and annihi­
lation. In 1992 S. Gatz and Joachim Herrmann at the 
Max Born Institute for Nonlinear Optics in Berlin found 
that solitons colliding coherently at shallow relative angles 
in a saturable nonlinearity can fuse together. Theorists 
Snyder and Adrian Sheppard subsequently showed that 
colliding solitons can undergo fission-that is, generate 
additional solitons-or annihilate each other.4 Their ex­
planation was elegant: One needs to compare the collision 
angle to the complementary critical angle above which 
total internal reflection and guiding occur. For a collision 
angle larger than that critical angle, the solitons simply 
go through each other. For "shallow" angle collisions, the 
beams couple light into each other's induced waveguide. 

Experimentally, soliton collisions leading to fusion 
have been observed in all kinds of saturable nonlinear 
media: atomic vapor, 13 photorefractive14 and quadratic.15 

The experimental results in figure 4 show an attractive 
incoherent collision between photorefractive solitons at 
large angles (top), and fusion (bottom) for small collision 
angles. Snyder and Sheppard also predicted that two 
colliding solitons may give birth to a new soliton and that 
three solitons can emerge after the collision-as has re­
cently been observed.16 Figure 5 shows an example of 
coherent soliton collisions in (l+l)D waveguides for quad­
ratic solitons. Phase differences intermediate between 0 
and 7T lead to energy exchange between solitons. The 
energy flow reverses in going from a phase difference of 
7r/2 to 37r/2. Similar effects have been seen in saturable 
media such as carbon disulfide and photorefractives. 

Solitons in (2+ 1) dimensions in saturable nonlinear 
media offer an opportunity to examine collisions of solitons 
with three-dimensional trajectories. Solitons launched 
individually move in their initial trajectories. If they are 
launched simultaneously so that their attraction balances 
the centrifugal force due to rotation, the solitons can 

capture each other into orbit and spiral about each other, 
like celestial objects or moving charged particles do. This 
effect, suggested first in the context of coherent collisions, 17 

has recently been demonstrated (figure 6) by employing 
an incoherent collision between photorefractive solitons.18 

When the initial distance between the solitons is in­
creased, the solitons' trajectories bend slightly toward each 
other, but their relative velocity is too large to form a 
bound pair. Conversely, if their separation is too small, 
they spiral in a converging orbit and eventually fuse . 
Spiraling-fusion effects have also been observed by Barry 
Luther-Davies and his coworkers at the Australian Na­
tional University. 13 These observations lead to the inter­
esting question: Do interacting spatial solitons conserve 
angular momentum? 

Variety of features 
Space limitations prevent us from discussing the many 
other interesting features of optical spatial solitons, but 
we will close by at least identifying a few of the key issues 
associated with them. In self-defocusing media, for ex­
ample, solitons take on the form / of vortices in (2+ 1) 
dimensions or dark stripes in (1+1) dimensions.1 (2+1)D 
waveguides feature vortices and (l+l)D waveguides carry 
dark solitons, which are linear voids borne on uniform 
beams. Another important topic consists of multicompo­
nent solitons, in which several electric-field components 
participate in the self-trapping process, by jointly creating 
an induced waveguide and guiding themselves in it. Yet 
another issue is the connection between stable solitons in 
one dimension and instabilities in a higher dimension. 
Different origins for the instabilities (such as transverse, ' 
longitudinal and azimuthal instabilities) have been inves­
tigated recently and the results have shed new light on 
nonlinear dynamics. 

Although the propagation distances involved in optical 
spatial solitons are certainly not on the scale of the 
temporal solitons in optical fibers, which have pioneered 
solitons in optics, the variety of nonlinearities accessible 
is far broader and the physical phenomena are much 
richer. Here we have glanced at some of the rapid pro­
gress, excitement and new physics that are emerging from 
investigations of optical spatial solitons. One can expect 
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that such investigations will lead to a deeper under­
standing of nonlinear dynamics, especially in view of the 
large and continuously increasing number of features that 
have been identified to be common to all solitons in nature. 

We thank our colleagues-too many to name here-for exploring 
the exciting world of soliton physics with us. Their shared ideas, 
insights, excitement, experiments and, most of all, their friendship 
are deeply appreciated. We dedicate this article to our late friend, 
Gustavo Torres-Cisneros, a talented young Mexican researcher on 
optical solitons, who died on 25 January 1998. Our research is 
supported by the Army Research Office, the Air Force Office of 
Scientific Research and the National Science Foundation. 
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