Ballam was an unusually effective director of SLAC's research. He established a first-rate computation department and his counsel on computation in high-energy physics was widely sought. As chairman of a subcommittee of the Department of Energy's High Energy Physics Advisory Panel, he was responsible for developing projections of the nation's computing needs for high-energy physics. He also advised Fermilab on upgrading computational facilities and counseled on computation at the proposed Superconducting Super Collider. After retiring in 1982, Ballam served as an adviser to the director of SLAC.

Joe Ballam had a rare and wonderful gift for gaining the respect, admiration and warm affection of his colleagues, even while making the necessary tough decisions as an associate director. His success lay in his ability to act decisively while remaining kind, patient and understanding under great pressure—and never sacrificing his sense of justice and fairness. His contributions will be long remembered and his many friends and associates miss him deeply.

WOLFGANG K. H. PANOFSKY

Stanford University Stanford, California

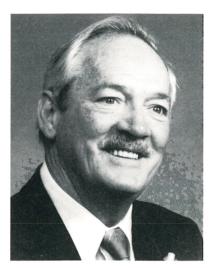
Joseph Walter Mather

On the evening of 5 November 1996, the noted experimental plasma physicist Joseph Walter Mather died at his home in Los Lunas, New Mexico, at the age of 76.

Born in Hartford, Connecticut, Joe had completed two years of junior college when the US entered World War II late in 1941. He joined the US Army and, after basic training, was sent to New York University for a year of further study. The Army Corps of Engineers then assigned Joe to Oak Ridge, Tennessee, to work on the thermal diffusion process for separating uranium-235 as part of the Manhattan Project. In 1943, Joe was transferred to Los Alamos, New Mexico, where he was assigned to the project's electronics group.

Following his military service, Joe earned a BS degree in physics from Rensselaer Polytechnic Institute in 1948 and a PhD in nuclear physics from the Berkeley campus of the University of California in 1952. Returning to Los Alamos, Joe joined the Controlled Thermonuclear Fusion Research (CTR) program, where he worked with John Marshall, among others. Joe's early contribution was the design and building of a 100 kV linear pinch device known as Columbus II, which led to the eventual build-

ing of the 5-megajoule Scyllac facility.


In 1963, Joe and Marshall were working on a plasma gun concept, dubbed the Marshall gun, in Jim Tuck's group. The idea was to launch a hightemperature, high-density plasma into a stabilizing and confining magnetic field. The coaxial device used an annular puff of deuterium midway along the center electrode to form the initial current path upon application of the fast capacitor bank voltage. Neutron and x-ray detectors monitored the plasmas continuously. The puff valve leaked one day and filled the vacuum chamber with deuterium gas at a low pressure. When the capacitor bank fired, a pinched, high-density plasma formed off the end of the center electrode and the radiation monitors went off-scale! Thus the device now known as the dense plasma focus, or DPF (and sometimes as the Mather gun), was born. The discovery with a different geometry was made nearly simultaneously and independently by Nikolai V. Filippov of the USSR, whom Joe met much later.

On 17 June 1965, while still in the CTR program, Joe planned and carefully executed a DPF experiment for the production of 14 MeV neutrons from a deuterium-tritium mixture at a rate of 80 to 100 times the production of neutrons from the pure deuterium gas discharges. That was most likely the world's first controlled D-T fusion reaction. A separate group, P-7, was formed on 1 July 1966 under sponsorship of the Department of Defense's Defense Atomic Support Agency (DASA), to study the production of soft x rays from the high-density, high-temperature plasmas. Art Williams and Glen Livermore joined Joe in forming this new group, which left the fold of the CTR program and became a part of the physics division at what is now Los Alamos National Laboratory (LANL).

The group's first device, DPF-1, was an 18 kJ device with six capacitors and six vacuum switches. Continuous improvements through several versions led to a 1 MJ system, DPF-6 $\frac{1}{2}$, which produced 2×10^{12} neutrons per discharge from 720 kJ and a 3.2 megamp peak current. The DPF program at LANL ended in 1974, when the Pentagon stopped funding it in favor of a competing technology, though DPF technology continues to be of great interest worldwide.

From the mid-1960s to the mid-1970s, Joe's P-7 group made many significant contributions to the field of pulsed power and pinched plasma technology and to the development of high-voltage technologies.

When he left LANL in 1975, Joe had his first bypass surgery. But he

JOSEPH WALTER MATHER

recovered fully and went on to build his own home, first in Taos and then in Los Lunas, New Mexico, to be a little closer to his cardiologist. He joined the University of New Mexico in 1981 as a research professor in the department of chemical and nuclear engineering and later in the department of physics and astronomy, where he mentored graduate students in conducting hands-on research.

Bothered by the fact that the pinches in DPF are notoriously less reproducible at different locations, Joe teamed up with Harjit Ahluwalia to try to find the answer. They concluded that the geomagnetic field possibly plays an important role in the problem, which still has not been appreciated by the plasma physics community.

Joe loved science, especially plasma physics, with the same passion that he hated war and the development of nuclear arsenals. Throughout his life, he served both causes with a deep sense of urgency and compassion. Those of us whose lives were enriched by the experience of interacting with him miss him and will remember this humane man for the rest of our lives.

HARJIT S. AHLUWALIA
University of New Mexico
Albuquerque, New Mexico
KENNETH D. WARE
Defense Special Weapons Agency
Washington, DC

Earl Wadsworth McDaniel

E arl Wadsworth McDaniel, a pioneer in atomic collision physics and gaseous electronics, died in Atlanta on 4 May 1997 of a brain aneurysm. His influence will be felt for many years through his seminal research contribu-